{"id":"https://openalex.org/W4292122383","doi":"https://doi.org/10.48550/arxiv.2208.07075","title":"Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training","display_name":"Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4292122383","doi":"https://doi.org/10.48550/arxiv.2208.07075"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.07075","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.07075","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004667195","display_name":"Arian Bakhtiarnia","orcid":"https://orcid.org/0000-0001-8624-8661"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bakhtiarnia, Arian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100360194","display_name":"Qi Zhang","orcid":"https://orcid.org/0000-0001-5303-9804"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Qi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5064535836","display_name":"Alexandros Iosifidis","orcid":"https://orcid.org/0000-0003-4807-1345"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Iosifidis, Alexandros","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11165","display_name":"Image and Video Quality Assessment","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lossy-compression","display_name":"Lossy compression","score":0.89179945},{"id":"https://openalex.org/keywords/jpeg","display_name":"JPEG","score":0.78150046},{"id":"https://openalex.org/keywords/jpeg-2000","display_name":"JPEG 2000","score":0.53386456}],"concepts":[{"id":"https://openalex.org/C165021410","wikidata":"https://www.wikidata.org/wiki/Q55564","display_name":"Lossy compression","level":2,"score":0.89179945},{"id":"https://openalex.org/C198751489","wikidata":"https://www.wikidata.org/wiki/Q2195","display_name":"JPEG","level":3,"score":0.78150046},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75497484},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63504344},{"id":"https://openalex.org/C69216139","wikidata":"https://www.wikidata.org/wiki/Q931783","display_name":"JPEG 2000","level":5,"score":0.53386456},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.51712584},{"id":"https://openalex.org/C13481523","wikidata":"https://www.wikidata.org/wiki/Q412438","display_name":"Image compression","level":4,"score":0.49790168},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.49072158},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.43297184},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4283247},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3532807},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34136033},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.28884017},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.07075","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.07075","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.07075","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.56,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385625475","https://openalex.org/W4313046148","https://openalex.org/W4210455546","https://openalex.org/W3180760233","https://openalex.org/W3162084246","https://openalex.org/W3080614128","https://openalex.org/W2783862746","https://openalex.org/W2096442341","https://openalex.org/W2078838509","https://openalex.org/W2013943429"],"abstract_inverted_index":{"JPEG":[0],"image":[1,10],"compression":[2,23],"algorithm":[3],"is":[4,97],"a":[5,45],"widely":[6],"used":[7],"technique":[8],"for":[9,52,108],"size":[11],"reduction":[12],"in":[13,62],"edge":[14],"and":[15,88,103],"cloud":[16],"computing":[17],"settings.":[18],"However,":[19],"applying":[20],"such":[21],"lossy":[22,66],"on":[24,55,78],"images":[25],"processed":[26],"by":[27,38,75,112],"deep":[28],"neural":[29],"networks":[30],"can":[31],"lead":[32],"to":[33,101,114],"significant":[34],"accuracy":[35,63],"degradation.":[36],"Inspired":[37],"the":[39,60,70,105],"curriculum":[40,49],"learning":[41],"paradigm,":[42],"we":[43],"propose":[44],"training":[46,95],"approach":[47,74],"called":[48],"pre-training":[50],"(CPT)":[51],"crowd":[53,80,84],"counting":[54,81,85],"compressed":[56,110],"images,":[57,111],"which":[58],"alleviates":[59],"drop":[61],"resulting":[64],"from":[65],"compression.":[67,92],"We":[68],"verify":[69],"effectiveness":[71],"of":[72,91],"our":[73],"extensive":[76],"experiments":[77],"three":[79],"datasets,":[82],"two":[83],"DNN":[86],"models":[87],"various":[89],"levels":[90],"The":[93],"proposed":[94],"method":[96],"not":[98],"overly":[99],"sensitive":[100],"hyper-parameters,":[102],"reduces":[104],"error,":[106],"particularly":[107],"heavily":[109],"up":[113],"19.70%.":[115]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4292122383","counts_by_year":[],"updated_date":"2025-03-02T00:11:21.204490","created_date":"2022-08-17"}