{"id":"https://openalex.org/W4292107142","doi":"https://doi.org/10.48550/arxiv.2208.06538","title":"MaskBlock: Transferable Adversarial Examples with Bayes Approach","display_name":"MaskBlock: Transferable Adversarial Examples with Bayes Approach","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4292107142","doi":"https://doi.org/10.48550/arxiv.2208.06538"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.06538","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.06538","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5104198236","display_name":"Mingyuan Fan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Mingyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100622590","display_name":"Cen Chen","orcid":"https://orcid.org/0000-0003-1389-0148"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Cen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058120371","display_name":"Ximeng Liu","orcid":"https://orcid.org/0000-0002-4238-3295"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Ximeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100643723","display_name":"Wenzhong Guo","orcid":"https://orcid.org/0000-0003-4118-8823"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Wenzhong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.60916,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10683","display_name":"Mass Spectrometry Techniques and Applications","score":0.9751,"subfield":{"id":"https://openalex.org/subfields/1607","display_name":"Spectroscopy"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9423,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transferability","display_name":"Transferability","score":0.8109336},{"id":"https://openalex.org/keywords/black-box","display_name":"Black box","score":0.5612947}],"concepts":[{"id":"https://openalex.org/C61272859","wikidata":"https://www.wikidata.org/wiki/Q7834031","display_name":"Transferability","level":3,"score":0.8109336},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.78184915},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.7221799},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6753894},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.6376242},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5792835},{"id":"https://openalex.org/C94966114","wikidata":"https://www.wikidata.org/wiki/Q29256","display_name":"Black box","level":2,"score":0.5612947},{"id":"https://openalex.org/C171268870","wikidata":"https://www.wikidata.org/wiki/Q1486676","display_name":"GRASP","level":2,"score":0.55337566},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47937468},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.39728194},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39538038},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20372331},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C140331021","wikidata":"https://www.wikidata.org/wiki/Q1868104","display_name":"Logit","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.06538","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2208.06538","pdf_url":"http://arxiv.org/pdf/2208.06538","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.06538","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.06538","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","display_name":"No poverty","score":0.71}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4392340763","https://openalex.org/W4377864639","https://openalex.org/W4288055406","https://openalex.org/W4283325551","https://openalex.org/W4226402597","https://openalex.org/W4200630034","https://openalex.org/W3137894200","https://openalex.org/W3132910851","https://openalex.org/W3092178728","https://openalex.org/W2997056298"],"abstract_inverted_index":{"The":[0],"transferability":[1,39,81,156],"of":[2,10,40,45,82,108,157],"adversarial":[3,15,159],"examples":[4,160],"(AEs)":[5],"across":[6],"diverse":[7],"models":[8],"is":[9,76,100,118,128,140],"critical":[11],"importance":[12],"for":[13,144],"black-box":[14,24,52],"attacks,":[16],"where":[17],"attackers":[18],"cannot":[19],"access":[20],"the":[21,38,46,66,80,92,106,137,155],"information":[22],"about":[23,164],"models.":[25],"However,":[26],"crafted":[27,158],"AEs":[28,41,55,90],"always":[29],"present":[30],"poor":[31],"transferability.":[32],"In":[33],"this":[34],"paper,":[35],"by":[36,161],"regarding":[37],"as":[42,91],"generalization":[43,107,142],"ability":[44],"model,":[47],"we":[48,86,134],"reveal":[49],"that":[50,136],"vanilla":[51],"attacks":[53],"craft":[54],"via":[56],"solving":[57],"a":[58,94,121,141],"maximum":[59],"likelihood":[60],"estimation":[61,97],"(MLE)":[62],"problem.":[63],"For":[64],"MLE,":[65],"results":[67,109],"probably":[68],"are":[69],"model-specific":[70],"local":[71],"optimum":[72],"when":[73],"available":[74,112],"data":[75],"small,":[77],"i.e.,":[78],"limiting":[79],"AEs.":[83],"By":[84],"contrast,":[85],"re-formulate":[87],"crafting":[88],"transferable":[89],"maximizing":[93],"posteriori":[95],"probability":[96],"problem,":[98],"which":[99],"an":[101],"effective":[102,124],"approach":[103],"to":[104,130,163],"boost":[105],"with":[110],"limited":[111],"data.":[113],"Because":[114],"Bayes":[115],"posterior":[116],"inference":[117],"commonly":[119],"intractable,":[120],"simple":[122],"yet":[123],"method":[125],"called":[126],"MaskBlock":[127,151],"developed":[129],"approximately":[131],"estimate.":[132],"Moreover,":[133],"show":[135],"formulated":[138],"framework":[139],"version":[143],"various":[145],"attack":[146],"methods.":[147],"Extensive":[148],"experiments":[149],"illustrate":[150],"can":[152],"significantly":[153],"improve":[154],"up":[162],"20%.":[165]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4292107142","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-24T01:58:58.458913","created_date":"2022-08-17"}