{"id":"https://openalex.org/W4291960940","doi":"https://doi.org/10.48550/arxiv.2208.06176","title":"A Knowledge Distillation-Based Backdoor Attack in Federated Learning","display_name":"A Knowledge Distillation-Based Backdoor Attack in Federated Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4291960940","doi":"https://doi.org/10.48550/arxiv.2208.06176"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.06176","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.06176","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5112838976","display_name":"Yifan Wang","orcid":"https://orcid.org/0009-0009-1032-3827"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yifan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100380588","display_name":"Wei Fan","orcid":"https://orcid.org/0009-0008-1900-7081"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081218237","display_name":"Ke\u2010Ke Yang","orcid":"https://orcid.org/0000-0002-7019-6059"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Keke","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086440124","display_name":"Naji Alhusaini","orcid":"https://orcid.org/0000-0003-2418-357X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alhusaini, Naji","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100336975","display_name":"Jing Li","orcid":"https://orcid.org/0000-0002-7027-5574"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Jing","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.640014,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/backdoor","display_name":"Backdoor","score":0.99923193}],"concepts":[{"id":"https://openalex.org/C2781045450","wikidata":"https://www.wikidata.org/wiki/Q254569","display_name":"Backdoor","level":2,"score":0.99923193},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.617108},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.52638155},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.48760596},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.4074971},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.404371},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39867276}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.06176","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.06176","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.06176","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.58,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386185023","https://openalex.org/W4386080799","https://openalex.org/W4320031223","https://openalex.org/W4317672133","https://openalex.org/W4309417370","https://openalex.org/W4292107232","https://openalex.org/W4281902577","https://openalex.org/W4200629851","https://openalex.org/W3140988292","https://openalex.org/W3009072493"],"abstract_inverted_index":{"Federated":[0],"Learning":[1],"(FL)":[2],"is":[3,19,130],"a":[4,38,65,125,179,224],"novel":[5],"framework":[6],"of":[7,16,67,71,84,92,127,139,148,244,254,286,293],"decentralized":[8,14],"machine":[9,42],"learning.":[10],"Due":[11],"to":[12,21,36,115,213,260,267,282],"the":[13,25,41,47,55,85,89,93,98,101,106,117,120,137,143,149,160,163,168,195,202,206,210,233,242,249,252,261,269,284,291],"feature":[15],"FL,":[17],"it":[18],"vulnerable":[20],"adversarial":[22],"attacks":[23],"in":[24,152,187,198],"training":[26],"procedure,":[27],"e.g.":[28],",":[29],"backdoor":[30,33,39,61,68,96,104,132,150,166,185],"attacks.":[31],"A":[32],"attack":[34,69,133,151,186,226,288],"aims":[35],"inject":[37],"into":[40],"learning":[43],"model":[44,48,199,207],"such":[45,128],"that":[46,131,218],"will":[49],"make":[50],"arbitrarily":[51],"incorrect":[52],"behavior":[53],"on":[54,158],"test":[56,247],"sample":[57],"with":[58,95,103,165,184],"some":[59],"specific":[60],"trigger.":[62],"Even":[63],"though":[64],"range":[66],"methods":[70,79,87,237,281],"FL":[72,153],"has":[73],"been":[74],"introduced,":[75],"there":[76],"are":[77,154],"also":[78,230,278],"defending":[80,86],"against":[81],"them.":[82],"Many":[83],"utilize":[88],"abnormal":[90,121,196],"characteristics":[91,197],"models":[94,102,164],"or":[97],"difference":[99,118,161],"between":[100,162],"and":[105,119,167,289],"regular":[107,169],"models.":[108,170],"To":[109,239],"bypass":[110,209,232],"these":[111],"defenses,":[112],"we":[113,174,192,216,246,264],"need":[114],"reduce":[116,194],"characteristics.":[122],"We":[123,277],"find":[124],"source":[126],"abnormality":[129],"would":[134],"directly":[135],"flip":[136],"label":[138,203],"data":[140],"when":[141,235],"poisoning":[142],"data.":[144],"However,":[145],"current":[146,214],"studies":[147],"not":[155,221],"mainly":[156],"focus":[157],"reducing":[159],"In":[171],"this":[172],"paper,":[173],"propose":[175],"Adversarial":[176],"Knowledge":[177],"Distillation(ADVKD),":[178],"method":[180],"combine":[181],"knowledge":[182,190],"distillation":[183],"FL.":[188],"With":[189],"distillation,":[191],"can":[193,208,220],"result":[200],"from":[201],"flipping,":[204],"thus":[205],"defenses.":[211],"Compared":[212],"methods,":[215],"show":[217],"ADVKD":[219,255],"only":[222],"reach":[223],"higher":[225],"success":[227],"rate,":[228],"but":[229],"successfully":[231],"defenses":[234],"other":[236],"fails.":[238],"further":[240],"explore":[241],"performance":[243,253,273],"ADVKD,":[245],"how":[248,266],"parameters":[250],"affect":[251],"under":[256,274],"different":[257,275,287],"scenarios.":[258,276],"According":[259],"experiment":[262],"result,":[263],"summarize":[265],"adjust":[268],"parameter":[270],"for":[271],"better":[272],"use":[279],"several":[280],"visualize":[283],"effect":[285],"explain":[290],"effectiveness":[292],"ADVKD.":[294]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4291960940","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-06T15:09:15.784732","created_date":"2022-08-16"}