{"id":"https://openalex.org/W4302553830","doi":"https://doi.org/10.48550/arxiv.2208.04043","title":"SLiDE: Self-supervised LiDAR De-snowing through Reconstruction Difficulty","display_name":"SLiDE: Self-supervised LiDAR De-snowing through Reconstruction Difficulty","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4302553830","doi":"https://doi.org/10.48550/arxiv.2208.04043"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.04043","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.04043","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073891656","display_name":"Gwangtak Bae","orcid":"https://orcid.org/0000-0001-8943-3205"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bae, Gwangtak","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030924379","display_name":"Byungjun Kim","orcid":"https://orcid.org/0000-0001-9925-9343"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Byungjun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102152664","display_name":"Seongyong Ahn","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ahn, Seongyong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038250767","display_name":"Jihong Min","orcid":"https://orcid.org/0000-0002-5788-1473"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Min, Jihong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5066513515","display_name":"Inwook Shim","orcid":"https://orcid.org/0000-0002-9167-6748"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shim, Inwook","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10644","display_name":"Cryospheric studies and observations","score":0.9898,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7603626},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.739733},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7190231},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.70628464},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6110776},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.5498306},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.47934803},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4447944},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.43953332},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42661855},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41043916},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.24905342},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.21886057},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.13113835},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12004584},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.04043","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.04043","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.04043","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.78,"display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4319837668","https://openalex.org/W4319317934","https://openalex.org/W4308071650","https://openalex.org/W4293094720","https://openalex.org/W4281783339","https://openalex.org/W3188333020","https://openalex.org/W2956374172","https://openalex.org/W2901265155","https://openalex.org/W2739701376","https://openalex.org/W2114282491"],"abstract_inverted_index":{"LiDAR":[0,12,63],"is":[1,139],"widely":[2],"used":[3],"to":[4,141,158],"capture":[5],"accurate":[6],"3D":[7,25],"outdoor":[8],"scene":[9,26],"structures.":[10,27],"However,":[11],"produces":[13],"many":[14],"undesirable":[15],"noise":[16,74],"points":[17,60,125],"in":[18,62],"snowy":[19],"weather,":[20],"which":[21,112],"hamper":[22],"analyzing":[23],"meaningful":[24],"Semantic":[28],"segmentation":[29],"with":[30,79],"snow":[31,59,124],"labels":[32],"would":[33],"be":[34,152],"a":[35,53,155],"straightforward":[36],"solution":[37],"for":[38,58],"removing":[39],"them,":[40],"but":[41],"it":[42],"requires":[43],"laborious":[44],"point-wise":[45,105],"annotation.":[46],"To":[47],"address":[48],"this":[49],"problem,":[50],"we":[51,113,146],"propose":[52],"novel":[54],"self-supervised":[55],"learning":[56],"framework":[57],"removal":[61],"point":[64,96],"clouds.":[65],"Our":[66,82,129],"method":[67,83,121,130,150],"exploits":[68],"the":[69,73,108,132,142],"structural":[70],"characteristic":[71],"of":[72,85,107,161,164],"points:":[75],"low":[76],"spatial":[77],"correlation":[78],"their":[80],"neighbors.":[81],"consists":[84],"two":[86],"deep":[87],"neural":[88],"networks:":[89],"Point":[90],"Reconstruction":[91,100],"Network":[92,102],"(PR-Net)":[93],"reconstructs":[94],"each":[95],"from":[97],"its":[98],"neighbors;":[99],"Difficulty":[101],"(RD-Net)":[103],"predicts":[104],"difficulty":[106],"reconstruction":[109,115],"by":[110],"PR-Net,":[111],"call":[114],"difficulty.":[116],"With":[117],"simple":[118],"post-processing,":[119],"our":[120,149],"effectively":[122],"detects":[123],"without":[126],"any":[127],"label.":[128],"achieves":[131],"state-of-the-art":[133],"performance":[134],"among":[135],"label-free":[136],"approaches":[137],"and":[138],"comparable":[140],"fully-supervised":[143],"method.":[144],"Moreover,":[145],"demonstrate":[147],"that":[148],"can":[151],"exploited":[153],"as":[154],"pretext":[156],"task":[157],"improve":[159],"label-efficiency":[160],"supervised":[162],"training":[163],"de-snowing.":[165]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4302553830","counts_by_year":[],"updated_date":"2024-12-15T18:47:24.313150","created_date":"2022-10-06"}