{"id":"https://openalex.org/W4299358323","doi":"https://doi.org/10.48550/arxiv.2208.03167","title":"Disentangling 3D Attributes from a Single 2D Image: Human Pose, Shape and Garment","display_name":"Disentangling 3D Attributes from a Single 2D Image: Human Pose, Shape and Garment","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4299358323","doi":"https://doi.org/10.48550/arxiv.2208.03167"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.03167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.03167","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100337743","display_name":"Xue Hu","orcid":"https://orcid.org/0000-0001-7350-7898"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Xue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101626462","display_name":"Xinghui Li","orcid":"https://orcid.org/0000-0002-8471-8196"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xinghui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067135033","display_name":"Benjamin Busam","orcid":"https://orcid.org/0000-0002-0620-5774"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Busam, Benjamin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101765844","display_name":"Yiren Zhou","orcid":"https://orcid.org/0000-0002-9021-5042"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Yiren","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085971943","display_name":"Ale\u0161 Leonardis","orcid":"https://orcid.org/0000-0003-0773-3277"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Leonardis, Ales","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5068360563","display_name":"Shanxin Yuan","orcid":"https://orcid.org/0000-0002-6918-8588"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yuan, Shanxin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9652,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9547,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.80012107},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.49394733},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.4303519},{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.41835204}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.80012107},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7486433},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7469065},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.67913854},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.63276184},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5440991},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5310438},{"id":"https://openalex.org/C189950617","wikidata":"https://www.wikidata.org/wiki/Q937228","display_name":"Property (philosophy)","level":2,"score":0.50100327},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.49394733},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.48393112},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.4303519},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.41835204},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.41416097},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35006547},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.24690768},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.116739005},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.03167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.03167","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.03167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.47,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390569940","https://openalex.org/W4389820835","https://openalex.org/W4388685194","https://openalex.org/W4388422664","https://openalex.org/W4361193272","https://openalex.org/W4312407344","https://openalex.org/W4310278675","https://openalex.org/W2963326959","https://openalex.org/W2905433371","https://openalex.org/W2888392564"],"abstract_inverted_index":{"For":[0],"visual":[1],"manipulation":[2],"tasks,":[3],"we":[4,45],"aim":[5],"to":[6,118,135,159],"represent":[7],"image":[8,42,76],"content":[9],"with":[10,69],"semantically":[11],"meaningful":[12,80],"features.":[13],"However,":[14],"learning":[15],"implicit":[16,52,151],"representations":[17,57,72],"from":[18,40,61,98],"images":[19],"often":[20],"lacks":[21],"interpretability,":[22],"especially":[23],"when":[24],"attributes":[25,38],"are":[26],"intertwined.":[27],"We":[28,127],"focus":[29,46],"on":[30,47,144],"the":[31,99,103,108,116,156],"challenging":[32],"task":[33],"of":[34,58,73,82,110],"extracting":[35],"disentangled":[36,70],"3D":[37,93,142],"only":[39],"2D":[41],"data.":[43],"Specifically,":[44],"human":[48],"appearance":[49],"and":[50,55,78,84,129,139,147],"learn":[51],"pose,":[53,137],"shape":[54,152],"garment":[56],"dressed":[59],"humans":[60],"RGB":[62],"images.":[63],"Our":[64],"method":[65,114],"learns":[66],"an":[67,150],"embedding":[68,105],"latent":[71],"these":[74],"three":[75],"properties":[77],"enables":[79],"re-assembling":[81],"features":[83],"property":[85],"control":[86],"through":[87],"a":[88],"2D-to-3D":[89],"encoder-decoder":[90],"structure.":[91],"The":[92],"model":[94],"is":[95,115],"inferred":[96],"solely":[97],"feature":[100],"map":[101],"in":[102,141],"learned":[104],"space.":[106],"To":[107],"best":[109],"our":[111,113,132],"knowledge,":[112],"first":[117],"achieve":[119],"cross-domain":[120],"disentanglement":[121],"for":[122],"this":[123],"highly":[124],"under-constrained":[125],"problem.":[126],"qualitatively":[128],"quantitatively":[130],"demonstrate":[131],"framework's":[133],"ability":[134,158],"transfer":[136],"shape,":[138],"garments":[140],"reconstruction":[143,162],"virtual":[145],"data":[146],"show":[148],"how":[149],"loss":[153],"can":[154],"benefit":[155],"model's":[157],"recover":[160],"fine-grained":[161],"details.":[163]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4299358323","counts_by_year":[],"updated_date":"2025-03-09T09:21:38.919147","created_date":"2022-10-02"}