{"id":"https://openalex.org/W4301519704","doi":"https://doi.org/10.48550/arxiv.2208.02204","title":"Efficiently Computing Nash Equilibria in Adversarial Team Markov Games","display_name":"Efficiently Computing Nash Equilibria in Adversarial Team Markov Games","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4301519704","doi":"https://doi.org/10.48550/arxiv.2208.02204"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.02204","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.02204","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069416974","display_name":"Fivos Kalogiannis","orcid":"https://orcid.org/0009-0002-5235-6116"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kalogiannis, Fivos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057299811","display_name":"Ioannis Anagnostides","orcid":"https://orcid.org/0000-0002-8037-6360"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Anagnostides, Ioannis","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083207837","display_name":"Ioannis Panageas","orcid":"https://orcid.org/0000-0003-0577-4147"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Panageas, Ioannis","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063068322","display_name":"Emmanouil-Vasileios Vlatakis-Gkaragkounis","orcid":"https://orcid.org/0009-0009-7549-538X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vlatakis-Gkaragkounis, Emmanouil-Vasileios","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054031027","display_name":"Vaggos Chatziafratis","orcid":"https://orcid.org/0000-0002-4475-4504"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chatziafratis, Vaggos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5048499015","display_name":"Stelios Stavroulakis","orcid":"https://orcid.org/0000-0002-2059-3152"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stavroulakis, Stelios","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.609064,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9868,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9868,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11031","display_name":"Game Theory and Applications","score":0.9774,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10646","display_name":"Experimental Behavioral Economics Studies","score":0.9147,"subfield":{"id":"https://openalex.org/subfields/3311","display_name":"Safety Research"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/correlated-equilibrium","display_name":"Correlated equilibrium","score":0.54223275},{"id":"https://openalex.org/keywords/stochastic-game","display_name":"Stochastic game","score":0.50942403}],"concepts":[{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.7056787},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.646645},{"id":"https://openalex.org/C46814582","wikidata":"https://www.wikidata.org/wiki/Q23389","display_name":"Nash equilibrium","level":2,"score":0.6313446},{"id":"https://openalex.org/C32407928","wikidata":"https://www.wikidata.org/wiki/Q2733833","display_name":"Best response","level":3,"score":0.62155455},{"id":"https://openalex.org/C163630976","wikidata":"https://www.wikidata.org/wiki/Q964667","display_name":"Correlated equilibrium","level":5,"score":0.54223275},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.52577114},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.5149558},{"id":"https://openalex.org/C22171661","wikidata":"https://www.wikidata.org/wiki/Q1074380","display_name":"Stochastic game","level":2,"score":0.50942403},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5021939},{"id":"https://openalex.org/C177142836","wikidata":"https://www.wikidata.org/wiki/Q44455","display_name":"Game theory","level":2,"score":0.49514237},{"id":"https://openalex.org/C141824439","wikidata":"https://www.wikidata.org/wiki/Q307521","display_name":"Epsilon-equilibrium","level":4,"score":0.49151167},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.45956236},{"id":"https://openalex.org/C41065033","wikidata":"https://www.wikidata.org/wiki/Q2825412","display_name":"Adversary","level":2,"score":0.4324732},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.373614},{"id":"https://openalex.org/C202556891","wikidata":"https://www.wikidata.org/wiki/Q1584646","display_name":"Repeated game","level":3,"score":0.34971166},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.30346748},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28200054},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2593934},{"id":"https://openalex.org/C164407509","wikidata":"https://www.wikidata.org/wiki/Q5384490","display_name":"Equilibrium selection","level":4,"score":0.22072017},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.11683574},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.02204","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.02204","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.02204","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.44,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4365460918","https://openalex.org/W4301347782","https://openalex.org/W2904794353","https://openalex.org/W2797291350","https://openalex.org/W2153002690","https://openalex.org/W2038156579","https://openalex.org/W2013767790","https://openalex.org/W1833660299","https://openalex.org/W1667857601","https://openalex.org/W1498818016"],"abstract_inverted_index":{"Computing":[0],"Nash":[1,142],"equilibrium":[2],"policies":[3,259],"is":[4,92,134,153,170,177,209],"a":[5,67,76,102,116,214,231,240],"central":[6],"problem":[7],"in":[8,18,21,47,74,82,144,155,188,191,202,260],"multi-agent":[9],"reinforcement":[10],"learning":[11],"that":[12,42,124,152],"has":[13],"received":[14],"extensive":[15],"attention":[16],"both":[17,126],"theory":[19],"and":[20,69,109,113,128,173,175,269],"practice.":[22],"However,":[23],"provable":[24],"guarantees":[25],"have":[26],"been":[27],"thus":[28],"far":[29],"either":[30],"limited":[31],"to":[32,45,118,224,239,266],"fully":[33],"competitive":[34],"or":[35,38,89],"cooperative":[36,129],"scenarios":[37],"impose":[39],"strong":[40],"assumptions":[41],"are":[43],"difficult":[44],"meet":[46],"most":[48],"practical":[49],"applications.":[50],"In":[51],"this":[52],"work,":[53],"we":[54,251],"depart":[55],"from":[56,196],"those":[57],"prior":[58],"results":[59],"by":[60,212],"investigating":[61],"infinite-horizon":[62],"\\emph{adversarial":[63],"team":[64,77,146,263],"Markov":[65,107,110,147],"games},":[66],"natural":[68,158,172,241],"well-motivated":[70],"class":[71],"of":[72,78,85,105,160,199,243,257],"games":[73,108,148,264],"which":[75],"identically-interested":[79],"players":[80],"--":[81,91],"the":[83,135,157,161,189,197,200,204,207,226,244,249],"absence":[84],"any":[86],"explicit":[87],"coordination":[88],"communication":[90],"competing":[93,127],"against":[94],"an":[95,254],"adversarial":[96,145,261],"player.":[97],"This":[98],"setting":[99],"allows":[100],"for":[101,138,185,206,230],"unifying":[103],"treatment":[104],"zero-sum":[106],"potential":[111],"games,":[112],"serves":[114],"as":[115,163,165],"step":[117],"model":[119],"more":[120],"realistic":[121],"strategic":[122],"interactions":[123],"feature":[125],"interests.":[130],"Our":[131,219],"main":[132],"contribution":[133],"first":[136],"algorithm":[137,169],"computing":[139],"stationary":[140],"$\\epsilon$-approximate":[141],"equilibria":[143],"with":[149,193,234],"computational":[150],"complexity":[151],"polynomial":[154],"all":[156],"parameters":[159],"game,":[162],"well":[164],"$1/\\epsilon$.":[166],"The":[167],"proposed":[168],"particularly":[171],"practical,":[174],"it":[176],"based":[178],"on":[179],"performing":[180],"independent":[181],"policy":[182,205],"gradient":[183],"steps":[184],"each":[186],"player":[187],"team,":[190],"tandem":[192],"best":[194],"responses":[195],"side":[198],"adversary;":[201],"turn,":[203],"adversary":[208],"then":[210],"obtained":[211],"solving":[213],"carefully":[215],"constructed":[216],"linear":[217],"program.":[218],"analysis":[220],"leverages":[221],"non-standard":[222],"techniques":[223],"establish":[225],"KKT":[227],"optimality":[228],"conditions":[229],"nonlinear":[232],"program":[233],"nonconvex":[235],"constraints,":[236],"thereby":[237],"leading":[238],"interpretation":[242],"induced":[245],"Lagrange":[246],"multipliers.":[247],"Along":[248],"way,":[250],"significantly":[252],"extend":[253],"important":[255],"characterization":[256],"optimal":[258],"(normal-form)":[262],"due":[265],"Von":[267],"Stengel":[268],"Koller":[270],"(GEB":[271],"`97).":[272]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4301519704","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-19T06:25:01.562694","created_date":"2022-10-05"}