{"id":"https://openalex.org/W4289446103","doi":"https://doi.org/10.48550/arxiv.2207.14606","title":"WISE: Whitebox Image Stylization by Example-based Learning","display_name":"WISE: Whitebox Image Stylization by Example-based Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4289446103","doi":"https://doi.org/10.48550/arxiv.2207.14606"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.14606","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057579016","display_name":"Winfried L\u00f6tzsch","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"L\u00f6tzsch, Winfried","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112888868","display_name":"Max Reimann","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Reimann, Max","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049460477","display_name":"Martin B\u00fcssemeyer","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"B\u00fcssemeyer, Martin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076672226","display_name":"Amir Semmo","orcid":"https://orcid.org/0000-0002-1553-4940"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Semmo, Amir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081246092","display_name":"J\u00fargen D\u00f6llner","orcid":"https://orcid.org/0000-0002-8981-8583"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"D\u00f6llner, J\u00fcrgen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090346908","display_name":"Matthias Trapp","orcid":"https://orcid.org/0000-0003-3861-5759"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Trapp, Matthias","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9784,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9675,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/heuristics","display_name":"Heuristics","score":0.6116038},{"id":"https://openalex.org/keywords/image-translation","display_name":"Image translation","score":0.5634711}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84082395},{"id":"https://openalex.org/C205711294","wikidata":"https://www.wikidata.org/wiki/Q176953","display_name":"Rendering (computer graphics)","level":2,"score":0.61458987},{"id":"https://openalex.org/C127705205","wikidata":"https://www.wikidata.org/wiki/Q5748245","display_name":"Heuristics","level":2,"score":0.6116038},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60386705},{"id":"https://openalex.org/C2779757391","wikidata":"https://www.wikidata.org/wiki/Q6002292","display_name":"Image translation","level":3,"score":0.5634711},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.5359187},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5102508},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.45843726},{"id":"https://openalex.org/C136197465","wikidata":"https://www.wikidata.org/wiki/Q1729295","display_name":"Variety (cybernetics)","level":2,"score":0.4555243},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36918026},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34189552},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.14606","pdf_url":"http://arxiv.org/pdf/2207.14606","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.14606","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.48,"display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4252555497","https://openalex.org/W3143197806","https://openalex.org/W3121175838","https://openalex.org/W3016293053","https://openalex.org/W2952904874","https://openalex.org/W2784269775","https://openalex.org/W2401723157","https://openalex.org/W2280422768","https://openalex.org/W2065055572","https://openalex.org/W1690653314"],"abstract_inverted_index":{"Image-based":[0],"artistic":[1],"rendering":[2],"can":[3,24,32,79,98,128,145,174],"synthesize":[4],"a":[5,52,63,100,113,149,155,170,179],"variety":[6],"of":[7,102],"expressive":[8],"styles":[9,49,134],"using":[10],"algorithmic":[11,71],"image":[12,72,136],"filtering.":[13],"In":[14],"contrast":[15],"to":[16,36,46,66,83,132,139,178],"deep":[17],"learning-based":[18],"methods,":[19],"these":[20,44],"heuristics-based":[21],"filtering":[22,73],"techniques":[23,45,74],"operate":[25],"on":[26],"high-resolution":[27],"images,":[28],"are":[29],"interpretable,":[30],"and":[31,54,123,135,169],"be":[33,146],"parameterized":[34],"according":[35],"various":[37],"design":[38],"aspects.":[39],"However,":[40],"adapting":[41],"or":[42,109,152],"extending":[43],"produce":[47],"new":[48,64],"is":[50],"often":[51],"tedious":[53],"error-prone":[55],"task":[56],"that":[57,78,97,163],"requires":[58],"expert":[59],"knowledge.":[60],"We":[61,161],"propose":[62],"paradigm":[65],"alleviate":[67],"this":[68,88],"problem:":[69],"implementing":[70],"as":[75,106],"differentiable":[76],"operations":[77],"learn":[80],"parametrizations":[81],"aligned":[82],"certain":[84],"reference":[85,133],"styles.":[86],"To":[87],"end,":[89],"we":[90,127],"present":[91],"WISE,":[92],"an":[93,166],"example-based":[94],"image-processing":[95],"system":[96],"handle":[99],"multitude":[101],"stylization":[103],"techniques,":[104],"such":[105],"watercolor,":[107],"oil":[108],"cartoon":[110],"stylization,":[111],"within":[112],"common":[114],"framework.":[115],"By":[116],"training":[117,165],"parameter":[118],"prediction":[119],"networks":[120],"for":[121,158,172],"global":[122],"local":[124],"filter":[125,168],"parameterizations,":[126],"simultaneously":[129],"adapt":[130],"effects":[131],"content,":[137],"e.g.,":[138],"enhance":[140],"facial":[141],"features.":[142],"Our":[143],"method":[144],"optimized":[147],"in":[148,154],"style-transfer":[150],"framework":[151],"learned":[153],"generative-adversarial":[156],"setting":[157],"image-to-image":[159],"translation.":[160],"demonstrate":[162],"jointly":[164],"XDoG":[167],"CNN":[171],"postprocessing":[173],"achieve":[175],"comparable":[176],"results":[177],"state-of-the-art":[180],"GAN-based":[181],"method.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4289446103","counts_by_year":[],"updated_date":"2025-01-04T20:37:18.842060","created_date":"2022-08-02"}