{"id":"https://openalex.org/W4288099483","doi":"https://doi.org/10.48550/arxiv.2207.13083","title":"Task Agnostic and Post-hoc Unseen Distribution Detection","display_name":"Task Agnostic and Post-hoc Unseen Distribution Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4288099483","doi":"https://doi.org/10.48550/arxiv.2207.13083"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.13083","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.13083","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041853580","display_name":"Radhika Dua","orcid":"https://orcid.org/0000-0002-8424-1033"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dua, Radhika","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003111561","display_name":"Seongjun Yang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Seongjun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100443469","display_name":"Yixuan Li","orcid":"https://orcid.org/0000-0002-0685-2875"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Yixuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5034622258","display_name":"Edward Choi","orcid":"https://orcid.org/0000-0002-5958-3509"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Choi, Edward","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mahalanobis-distance","display_name":"Mahalanobis distance","score":0.9609102}],"concepts":[{"id":"https://openalex.org/C1921717","wikidata":"https://www.wikidata.org/wiki/Q1334846","display_name":"Mahalanobis distance","level":2,"score":0.9609102},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7986201},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6194234},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6171785},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.5843126},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4986577},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.49335542},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4836008},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.46181238},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44766614},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.17147157},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.13083","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.13083","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.13083","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W939486154","https://openalex.org/W4382795578","https://openalex.org/W2793032185","https://openalex.org/W2771741613","https://openalex.org/W2402648945","https://openalex.org/W2355463328","https://openalex.org/W2057608111","https://openalex.org/W2055761197","https://openalex.org/W2053213469","https://openalex.org/W1431147547"],"abstract_inverted_index":{"Despite":[0],"the":[1,44,48,62,68,73,82,87,132,140,144,148],"recent":[2],"advances":[3],"in":[4],"out-of-distribution(OOD)":[5],"detection,":[6,8],"anomaly":[7],"and":[9,19,36,66,101,110,126,152],"uncertainty":[10],"estimation":[11],"tasks,":[12],"there":[13],"do":[14],"not":[15],"exist":[16],"a":[17,28,52,93],"task-agnostic":[18],"post-hoc":[20],"approach.":[21],"To":[22,135],"address":[23],"this":[24,136],"limitation,":[25],"we":[26,80,113,138],"design":[27],"novel":[29],"clustering-based":[30],"ensembling":[31],"method,":[32],"called":[33],"Task":[34],"Agnostic":[35],"Post-hoc":[37],"Unseen":[38],"Distribution":[39],"Detection":[40],"(TAPUDD)":[41],"that":[42,85,115,154],"utilizes":[43],"features":[45,65],"extracted":[46],"from":[47,76],"model":[49],"trained":[50],"on":[51,108],"specific":[53],"task.":[54],"Explicitly,":[55],"it":[56],"comprises":[57],"of":[58,72,89,96,142,147,150],"TAP-Mahalanobis,":[59],"which":[60],"clusters":[61,97,151],"training":[63],"datasets'":[64],"determines":[67],"minimum":[69],"Mahalanobis":[70],"distance":[71],"test":[74],"sample":[75],"all":[77],"clusters.":[78],"Further,":[79],"propose":[81],"Ensembling":[83],"module":[84],"aggregates":[86],"computation":[88],"iterative":[90],"TAP-Mahalanobis":[91],"for":[92,160],"different":[94],"number":[95,149],"to":[98],"provide":[99],"reliable":[100],"efficient":[102],"cluster":[103],"computation.":[104],"Through":[105],"extensive":[106],"experiments":[107],"synthetic":[109],"real-world":[111],"datasets,":[112],"observe":[114],"our":[116,155],"approach":[117],"can":[118],"detect":[119],"unseen":[120],"samples":[121],"effectively":[122],"across":[123],"diverse":[124],"tasks":[125],"performs":[127],"better":[128],"or":[129],"on-par":[130],"with":[131],"existing":[133],"baselines.":[134],"end,":[137],"eliminate":[139],"necessity":[141],"determining":[143],"optimal":[145],"value":[146],"demonstrate":[153],"method":[156],"is":[157],"more":[158],"viable":[159],"large-scale":[161],"classification":[162],"tasks.":[163]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4288099483","counts_by_year":[],"updated_date":"2025-03-04T15:50:30.022686","created_date":"2022-07-28"}