{"id":"https://openalex.org/W4288055194","doi":"https://doi.org/10.48550/arxiv.2207.12201","title":"Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection","display_name":"Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4288055194","doi":"https://doi.org/10.48550/arxiv.2207.12201"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.12201","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.12201","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091676049","display_name":"Hongzuo Xu","orcid":"https://orcid.org/0000-0001-8074-1244"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Hongzuo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100429826","display_name":"Yijie Wang","orcid":"https://orcid.org/0000-0002-2913-4016"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yijie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000084858","display_name":"Songlei Jian","orcid":"https://orcid.org/0000-0002-1435-0410"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jian, Songlei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033997209","display_name":"Qing Liao","orcid":"https://orcid.org/0000-0002-9169-4196"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liao, Qing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100424209","display_name":"Yongjun Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yongjun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5039104219","display_name":"Guansong Pang","orcid":"https://orcid.org/0000-0002-9877-2716"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pang, Guansong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.865382,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.63679194}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.85598135},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6732854},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.63679194},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6230761},{"id":"https://openalex.org/C2776157432","wikidata":"https://www.wikidata.org/wiki/Q1375683","display_name":"Normality","level":2,"score":0.6162807},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.54819334},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.51675934},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.50463784},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.4564481},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.4547708},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4126085},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38675714},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18205202},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.117375195},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.12201","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.12201","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.12201","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.62}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2972971679","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Unsupervised":[0],"time":[1,21,155],"series":[2,22,156],"anomaly":[3,23,66,125,147],"detection":[4],"is":[5,108,135,206],"instrumental":[6],"in":[7,16,61,110,169],"monitoring":[8],"and":[9,33,44,138,195],"alarming":[10],"potential":[11],"faults":[12],"of":[13,78,124,162],"target":[14],"systems":[15],"various":[17],"domains.":[18],"Current":[19],"state-of-the-art":[20,193],"detectors":[24],"mainly":[25],"focus":[26],"on":[27,159,182],"devising":[28],"advanced":[29],"neural":[30],"network":[31],"structures":[32],"new":[34],"reconstruction/prediction":[35],"learning":[36,53,71,95],"objectives":[37],"to":[38,101,152],"learn":[39,83],"data":[40,64],"normality":[41,70,87,178],"(normal":[42],"patterns":[43],"behaviors)":[45],"as":[46,48],"accurately":[47],"possible.":[49],"However,":[50],"these":[51],"one-class":[52,94,99,106,133,172],"methods":[54],"can":[55],"be":[56],"deceived":[57],"by":[58,114,140],"unknown":[59],"anomalies":[60,77],"the":[62,76,122,129,132,142,160],"training":[63],"(i.e.,":[65],"contamination).":[67],"Further,":[68],"their":[69],"also":[72],"lacks":[73],"knowledge":[74],"about":[75],"interest.":[79],"Consequently,":[80],"they":[81],"often":[82],"a":[84,92,175],"biased,":[85],"inaccurate":[86],"boundary.":[88],"This":[89],"paper":[90],"proposes":[91],"novel":[93],"approach,":[96],"named":[97],"calibrated":[98,109],"classification,":[100],"tackle":[102],"this":[103],"problem.":[104],"Our":[105],"classifier":[107],"two":[111,166],"ways:":[112],"(1)":[113],"adaptively":[115],"penalizing":[116],"uncertain":[117],"predictions,":[118],"which":[119],"helps":[120],"eliminate":[121],"impact":[123],"contamination":[126],"while":[127],"accentuating":[128],"predictions":[130],"that":[131,149,187],"model":[134,189],"confident":[136],"in,":[137],"(2)":[139],"discriminating":[141],"normal":[143],"samples":[144],"from":[145],"native":[146],"examples":[148],"are":[150],"generated":[151],"simulate":[153],"genuine":[154],"abnormal":[157],"behaviors":[158],"basis":[161],"original":[163],"data.":[164],"These":[165],"calibrations":[167],"result":[168],"contamination-tolerant,":[170],"anomaly-informed":[171],"learning,":[173],"yielding":[174],"significantly":[176],"improved":[177],"modeling.":[179],"Extensive":[180],"experiments":[181],"six":[183],"real-world":[184],"datasets":[185],"show":[186],"our":[188],"substantially":[190],"outperforms":[191],"twelve":[192],"competitors":[194],"obtains":[196],"6%":[197],"-":[198],"31%":[199],"F1":[200],"score":[201],"improvement.":[202],"The":[203],"source":[204],"code":[205],"available":[207],"at":[208],"\\url{https://github.com/xuhongzuo/couta}.":[209]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4288055194","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":10}],"updated_date":"2025-01-03T07:14:06.062808","created_date":"2022-07-28"}