{"id":"https://openalex.org/W4288043575","doi":"https://doi.org/10.48550/arxiv.2207.10825","title":"Just Rotate it: Deploying Backdoor Attacks via Rotation Transformation","display_name":"Just Rotate it: Deploying Backdoor Attacks via Rotation Transformation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4288043575","doi":"https://doi.org/10.48550/arxiv.2207.10825"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.10825","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.10825","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100736872","display_name":"Tong Wu","orcid":"https://orcid.org/0000-0002-0842-5623"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Tong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100610986","display_name":"Tianhao Wang","orcid":"https://orcid.org/0000-0002-9017-7947"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Tianhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011437254","display_name":"Vikash Sehwag","orcid":"https://orcid.org/0000-0001-7160-8556"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sehwag, Vikash","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049153799","display_name":"Saeed Mahloujifar","orcid":"https://orcid.org/0000-0001-6586-8378"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mahloujifar, Saeed","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5015619835","display_name":"Prateek Mittal","orcid":"https://orcid.org/0000-0002-4057-0118"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mittal, Prateek","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9384,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/backdoor","display_name":"Backdoor","score":0.99656343},{"id":"https://openalex.org/keywords/spurious-relationship","display_name":"Spurious relationship","score":0.70057803}],"concepts":[{"id":"https://openalex.org/C2781045450","wikidata":"https://www.wikidata.org/wiki/Q254569","display_name":"Backdoor","level":2,"score":0.99656343},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7525418},{"id":"https://openalex.org/C97256817","wikidata":"https://www.wikidata.org/wiki/Q1462316","display_name":"Spurious relationship","level":2,"score":0.70057803},{"id":"https://openalex.org/C74050887","wikidata":"https://www.wikidata.org/wiki/Q848368","display_name":"Rotation (mathematics)","level":2,"score":0.6614096},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59118354},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.59101826},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.5711108},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5226964},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.490105},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.47226158},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.46875787},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.42255002},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36364096},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.30723035},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.10825","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.10825","pdf_url":"http://arxiv.org/pdf/2207.10825","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.10825","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.10825","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386080799","https://openalex.org/W4320031223","https://openalex.org/W4317672133","https://openalex.org/W4309417370","https://openalex.org/W4292107232","https://openalex.org/W4281902577","https://openalex.org/W4200629851","https://openalex.org/W3140988292","https://openalex.org/W3121164913","https://openalex.org/W3009072493"],"abstract_inverted_index":{"Recent":[0],"works":[1],"have":[2],"demonstrated":[3],"that":[4,32,122],"deep":[5],"learning":[6],"models":[7],"are":[8,37],"vulnerable":[9],"to":[10,20],"backdoor":[11,115,175],"poisoning":[12],"attacks,":[13],"where":[14],"these":[15],"attacks":[16],"instill":[17],"spurious":[18],"correlations":[19],"external":[21,34],"trigger":[22,35],"patterns":[23],"or":[24],"objects":[25,63],"(e.g.,":[26],"stickers,":[27],"sunglasses,":[28],"etc.).":[29],"We":[30],"find":[31,121],"such":[33],"signals":[36],"unnecessary,":[38],"as":[39,128,150],"highly":[40,171],"effective":[41,172],"backdoors":[42],"can":[43,126,135],"be":[44,136],"easily":[45,137],"inserted":[46],"using":[47],"rotation-based":[48],"image":[49,99,155],"transformation.":[50],"Our":[51,133,177],"method":[52],"constructs":[53],"the":[54,72,140,148],"poisoned":[55],"dataset":[56],"by":[57],"rotating":[58,147],"a":[59,84,129,165],"limited":[60],"amount":[61],"of":[62,124],"and":[64,101,112,120,157,170],"labeling":[65],"them":[66,125],"incorrectly;":[67],"once":[68],"trained":[69],"with":[70],"it,":[71],"victim's":[73],"model":[74],"will":[75],"make":[76],"undesirable":[77],"predictions":[78],"during":[79],"run-time":[80],"inference.":[81],"It":[82],"exhibits":[83],"significantly":[85],"high":[86],"attack":[87,119,134],"success":[88],"rate":[89],"while":[90],"maintaining":[91],"clean":[92],"performance":[93],"through":[94],"comprehensive":[95],"empirical":[96],"studies":[97],"on":[98],"classification":[100,156],"object":[102,158],"detection":[103,159],"tasks.":[104],"Furthermore,":[105],"we":[106,151],"evaluate":[107],"standard":[108],"data":[109],"augmentation":[110],"techniques":[111],"four":[113],"different":[114],"defenses":[116],"against":[117],"our":[118,162],"none":[123],"serve":[127],"consistent":[130],"mitigation":[131],"approach.":[132],"deployed":[138],"in":[139,153],"real":[141],"world":[142],"since":[143],"it":[144],"only":[145],"requires":[146],"object,":[149],"show":[152],"both":[154],"applications.":[160],"Overall,":[161],"work":[163],"highlights":[164],"new,":[166],"simple,":[167],"physically":[168],"realizable,":[169],"vector":[173],"for":[174],"attacks.":[176],"video":[178],"demo":[179],"is":[180],"available":[181],"at":[182],"https://youtu.be/6JIF8wnX34M.":[183]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4288043575","counts_by_year":[],"updated_date":"2025-04-23T07:52:14.113195","created_date":"2022-07-27"}