{"id":"https://openalex.org/W4286750939","doi":"https://doi.org/10.48550/arxiv.2207.10167","title":"Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging","display_name":"Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4286750939","doi":"https://doi.org/10.48550/arxiv.2207.10167"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.10167","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5087929832","display_name":"Hana Haselji\u0107","orcid":"https://orcid.org/0000-0003-3959-2122"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Haselji\u0107, Hana","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067703063","display_name":"Soumick Chatterjee","orcid":"https://orcid.org/0000-0001-7594-1188"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chatterjee, Soumick","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005058303","display_name":"Robert Frysch","orcid":"https://orcid.org/0000-0003-2699-9468"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Frysch, Robert","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018585865","display_name":"Vojt\u011bch Kulvait","orcid":"https://orcid.org/0000-0003-3279-3757"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kulvait, Vojt\u011bch","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037062088","display_name":"Vladimir Semshchikov","orcid":"https://orcid.org/0000-0003-2764-7712"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Semshchikov, Vladimir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072325586","display_name":"Bennet Hensen","orcid":"https://orcid.org/0000-0001-6966-273X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hensen, Bennet","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088938129","display_name":"Frank Wacker","orcid":"https://orcid.org/0000-0002-6285-8403"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wacker, Frank","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079774186","display_name":"Inga Br\u00fcsch","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Br\u00fcsch, Inga","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076491808","display_name":"Thomas Werncke","orcid":"https://orcid.org/0000-0002-4043-5506"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Werncke, Thomas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055725293","display_name":"Oliver Speck","orcid":"https://orcid.org/0000-0002-6019-5597"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Speck, Oliver","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075663234","display_name":"Andreas N\u00fcrnberger","orcid":"https://orcid.org/0000-0003-4311-0624"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"N\u00fcrnberger, Andreas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5022172450","display_name":"Georg Rose","orcid":"https://orcid.org/0000-0002-2215-150X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rose, Georg","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12386","display_name":"Advanced X-ray and CT Imaging","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7208895},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6238532},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5795326},{"id":"https://openalex.org/C2779813781","wikidata":"https://www.wikidata.org/wiki/Q1224951","display_name":"Cone beam computed tomography","level":3,"score":0.54661596},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.51782376},{"id":"https://openalex.org/C146957229","wikidata":"https://www.wikidata.org/wiki/Q1266915","display_name":"Perfusion","level":2,"score":0.43800238},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.39217952},{"id":"https://openalex.org/C2989005","wikidata":"https://www.wikidata.org/wiki/Q214963","display_name":"Nuclear medicine","level":1,"score":0.35403866},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33527794},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.30881912},{"id":"https://openalex.org/C544519230","wikidata":"https://www.wikidata.org/wiki/Q32566","display_name":"Computed tomography","level":2,"score":0.29904366},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.28327966}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.10167","pdf_url":"http://arxiv.org/pdf/2207.10167","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.10167","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4316127112"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3124914020","https://openalex.org/W2387910809","https://openalex.org/W2383687187","https://openalex.org/W2156434174","https://openalex.org/W2141033859","https://openalex.org/W2121496884","https://openalex.org/W2077542787","https://openalex.org/W2071701083","https://openalex.org/W2070401501","https://openalex.org/W2068608913"],"abstract_inverted_index":{"Model-based":[0],"reconstruction":[1],"employing":[2],"the":[3,16,35,42,75,86,89,97,105,110,120,129,154,170,174,185,195,198,204,208,218,229,232,237,241],"time":[4],"separation":[5],"technique":[6],"(TST)":[7],"was":[8,157],"found":[9],"to":[10,53],"improve":[11],"dynamic":[12],"perfusion":[13,33,62,238],"imaging":[14],"of":[15,46,61,74,88,112,115,123,137,173,197,206,236,244],"liver":[17,36,81,124,209,245],"using":[18,27],"C-arm":[19],"cone-beam":[20],"computed":[21],"tomography":[22],"(CBCT).":[23],"To":[24],"apply":[25],"TST":[26,94],"prior":[28],"knowledge":[29],"extracted":[30],"from":[31,41,126,184,210,217],"CT":[32,43],"data,":[34,222],"should":[37],"be":[38,54,226],"accurately":[39],"segmented":[40,55],"scans.":[44],"Reconstructions":[45],"primary":[47],"and":[48,59,139,143,188,213,234],"model-based":[49],"CBCT":[50,93,127,214],"data":[51],"need":[52],"for":[56,104,117,160,231,240],"proper":[57],"visualisation":[58,233],"interpretation":[60],"maps.":[63],"This":[64,201],"research":[65],"proposes":[66],"Turbolift":[67,166],"learning,":[68],"which":[69,156,223],"trains":[70],"a":[71],"modified":[72],"version":[73],"multi-scale":[76],"Attention":[77],"UNet":[78],"on":[79],"different":[80],"segmentation":[82,125,199],"tasks":[83],"serially,":[84],"following":[85],"order":[87,196],"trainings":[90,99],"CT,":[91,211],"CBCT,":[92,212],"-":[95,108,148],"making":[96],"previous":[98],"act":[100],"as":[101],"pre-training":[102],"stages":[103],"subsequent":[106],"ones":[107],"addressing":[109],"problem":[111],"limited":[113,220],"number":[114],"datasets":[116],"training.":[118],"For":[119],"final":[121],"task":[122],"TST,":[128,215],"proposed":[130],"method":[131],"achieved":[132],"an":[133],"overall":[134,171],"Dice":[135],"scores":[136],"0.874$\\pm$0.031":[138],"0.905$\\pm$0.007":[140],"in":[141,228],"6-fold":[142],"4-fold":[144],"cross-validation":[145],"experiments,":[146],"respectively":[147],"securing":[149],"statistically":[150],"significant":[151],"improvements":[152],"over":[153],"model,":[155],"trained":[158],"only":[159,168],"that":[161,165],"task.":[162],"Experiments":[163],"revealed":[164],"not":[167],"improves":[169],"performance":[172],"model":[175],"but":[176],"also":[177],"makes":[178],"it":[179],"robust":[180],"against":[181],"artefacts":[182],"originating":[183],"embolisation":[186],"materials":[187],"truncation":[189],"artefacts.":[190],"Additionally,":[191],"in-depth":[192],"analyses":[193],"confirmed":[194],"tasks.":[200],"paper":[202],"shows":[203],"potential":[205],"segmenting":[207],"learning":[216],"available":[219],"training":[221],"can":[224],"possibly":[225],"used":[227],"future":[230],"evaluation":[235,243],"maps":[239],"treatment":[242],"diseases.":[246]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4286750939","counts_by_year":[],"updated_date":"2024-12-09T20:30:24.746920","created_date":"2022-07-23"}