{"id":"https://openalex.org/W4286750869","doi":"https://doi.org/10.48550/arxiv.2207.09980","title":"ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective","display_name":"ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4286750869","doi":"https://doi.org/10.48550/arxiv.2207.09980"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.09980","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.09980","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100615547","display_name":"Yihong Chen","orcid":"https://orcid.org/0000-0002-3416-5482"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Yihong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101460613","display_name":"Pushkar Mishra","orcid":"https://orcid.org/0000-0003-3336-0865"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mishra, Pushkar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074874504","display_name":"Luca Franceschi","orcid":"https://orcid.org/0000-0002-1810-1016"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Franceschi, Luca","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019106673","display_name":"Pasquale Minervini","orcid":"https://orcid.org/0000-0002-8442-602X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Minervini, Pasquale","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049427071","display_name":"Pontus Stenetorp","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stenetorp, Pontus","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101404695","display_name":"Sebastian Riedel","orcid":"https://orcid.org/0000-0002-3655-2486"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Riedel, Sebastian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.640014,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":71},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9751,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9698,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code-refactoring","display_name":"Code refactoring","score":0.7808285},{"id":"https://openalex.org/keywords/inductive-bias","display_name":"Inductive bias","score":0.54023486}],"concepts":[{"id":"https://openalex.org/C152752567","wikidata":"https://www.wikidata.org/wiki/Q116877","display_name":"Code refactoring","level":3,"score":0.7808285},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76318204},{"id":"https://openalex.org/C854659","wikidata":"https://www.wikidata.org/wiki/Q1859284","display_name":"Message passing","level":2,"score":0.586218},{"id":"https://openalex.org/C197352929","wikidata":"https://www.wikidata.org/wiki/Q1074074","display_name":"Inductive bias","level":4,"score":0.54023486},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4956292},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4594951},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.44884807},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.42003053},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.22265723},{"id":"https://openalex.org/C28006648","wikidata":"https://www.wikidata.org/wiki/Q6934509","display_name":"Multi-task learning","level":3,"score":0.10918847},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.10451329},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.09980","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.09980","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.09980","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4313549863","https://openalex.org/W4297817821","https://openalex.org/W4296534969","https://openalex.org/W3176957927","https://openalex.org/W3100116469","https://openalex.org/W3041877813","https://openalex.org/W3037162414","https://openalex.org/W2395465245","https://openalex.org/W2101762871","https://openalex.org/W2072205733"],"abstract_inverted_index":{"Factorisation-based":[0],"Models":[1],"(FMs),":[2],"such":[3],"as":[4,66,80,88],"DistMult,":[5],"have":[6],"enjoyed":[7],"enduring":[8],"success":[9],"for":[10],"Knowledge":[11],"Graph":[12,18],"Completion":[13],"(KGC)":[14],"tasks,":[15],"often":[16],"outperforming":[17],"Neural":[19],"Networks":[20],"(GNNs).":[21],"However,":[22],"unlike":[23],"GNNs,":[24],"FMs":[25,45,76],"struggle":[26],"to":[27,33,113],"incorporate":[28],"node":[29],"features":[30],"and":[31,46,115],"generalise":[32],"unseen":[34],"nodes":[35],"in":[36],"inductive":[37,117],"settings.":[38],"Our":[39],"work":[40],"bridges":[41],"the":[42,84,93],"gap":[43],"between":[44],"GNNs":[47,81,108],"by":[48,82],"proposing":[49],"ReFactor":[50,97,107],"GNNs.":[51,98],"This":[52],"new":[53],"architecture":[54],"draws":[55],"upon":[56],"both":[57],"modelling":[58],"paradigms,":[59],"which":[60,91],"previously":[61],"were":[62],"largely":[63],"thought":[64],"of":[65,95,102,123],"disjoint.":[67],"Concretely,":[68],"using":[69,120],"a":[70,100],"message-passing":[71,89],"formalism,":[72],"we":[73],"show":[74],"how":[75],"can":[77],"be":[78],"cast":[79],"reformulating":[83],"gradient":[85],"descent":[86],"procedure":[87],"operations,":[90],"forms":[92],"basis":[94],"our":[96,106],"Across":[99],"multitude":[101],"well-established":[103],"KGC":[104],"benchmarks,":[105],"achieve":[109],"comparable":[110],"transductive":[111],"performance":[112,118],"FMs,":[114],"state-of-the-art":[116],"while":[119],"an":[121],"order":[122],"magnitude":[124],"fewer":[125],"parameters.":[126]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4286750869","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-07T18:04:38.561256","created_date":"2022-07-23"}