{"id":"https://openalex.org/W4286224250","doi":"https://doi.org/10.48550/arxiv.2207.09139","title":"Heterogeneous Treatment Effect with Trained Kernels of the Nadaraya-Watson Regression","display_name":"Heterogeneous Treatment Effect with Trained Kernels of the Nadaraya-Watson Regression","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4286224250","doi":"https://doi.org/10.48550/arxiv.2207.09139"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.09139","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.09139","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062600336","display_name":"Andrei V. Konstantinov","orcid":"https://orcid.org/0000-0002-1542-6480"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Konstantinov, Andrei V.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050293875","display_name":"Stanislav R. Kirpichenko","orcid":"https://orcid.org/0000-0003-2275-1473"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kirpichenko, Stanislav R.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5037096829","display_name":"Lev V. Utkin","orcid":"https://orcid.org/0000-0002-5637-1420"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Utkin, Lev V.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9458,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9458,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9159,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/watson","display_name":"Watson","score":0.7388655},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.584563},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42884508}],"concepts":[{"id":"https://openalex.org/C2776608531","wikidata":"https://www.wikidata.org/wiki/Q12253","display_name":"Watson","level":2,"score":0.7388655},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.6264904},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.584563},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5644692},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.51348454},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.4744062},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46107483},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.44752914},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42884508},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36774802},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3161983},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2627951},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.12083256},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.09139","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.09139","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.09139","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4289356671","https://openalex.org/W3186837933","https://openalex.org/W31220157","https://openalex.org/W2621086889","https://openalex.org/W2389155397","https://openalex.org/W2368989808","https://openalex.org/W2355687852","https://openalex.org/W2312753042","https://openalex.org/W2165884543","https://openalex.org/W2034959125"],"abstract_inverted_index":{"A":[0],"new":[1],"method":[2],"for":[3,23,50,172],"estimating":[4],"the":[5,13,28,31,39,47,56,71,110,114,118,125,131,140,166,176],"conditional":[6],"average":[7],"treatment":[8,59,179],"effect":[9],"is":[10,16,35,43,66,87,137,189],"proposed":[11,135,185],"in":[12,130,191],"paper.":[14],"It":[15],"called":[17],"TNW-CATE":[18,45,65,161,188],"(the":[19],"Trainable":[20],"Nadaraya-Watson":[21,48,72,119],"regression":[22,49,73],"CATE)":[24],"and":[25,58,91,147,162,170,178],"based":[26],"on":[27,89],"assumption":[29],"that":[30,106],"number":[32,40],"of":[33,41,53,70,81,99,145,175,184],"controls":[34],"rather":[36],"large":[37],"whereas":[38],"treatments":[42],"small.":[44],"uses":[46],"predicting":[51],"outcomes":[52],"patients":[54],"from":[55],"control":[57,177],"groups.":[60],"The":[61,85,121,134,182],"main":[62],"idea":[63],"behind":[64],"to":[67,139],"train":[68],"kernels":[69,95],"by":[74],"using":[75],"a":[76,82,97],"weight":[77],"sharing":[78],"neural":[79,100],"network":[80,86,116,122],"specific":[83],"form.":[84],"trained":[88],"controls,":[90],"it":[92,164],"replaces":[93],"standard":[94],"with":[96,102,165],"set":[98],"subnetworks":[101],"shared":[103],"parameters":[104],"such":[105],"every":[107],"subnetwork":[108],"implements":[109,117],"trainable":[111],"kernel,":[112],"but":[113,152],"whole":[115],"estimator.":[120],"memorizes":[123],"how":[124],"feature":[126,132],"vectors":[127],"are":[128,150,154],"located":[129],"space.":[133],"approach":[136],"similar":[138],"transfer":[141],"learning":[142],"when":[143],"domains":[144],"source":[146],"target":[148],"data":[149],"similar,":[151],"tasks":[153],"different.":[155],"Various":[156],"numerical":[157],"simulation":[158],"experiments":[159],"illustrate":[160],"compare":[163],"well-known":[167],"T-learner,":[168],"S-learner":[169],"X-learner":[171],"several":[173],"types":[174],"outcome":[180],"functions.":[181],"code":[183],"algorithms":[186],"implementing":[187],"available":[190],"https://github.com/Stasychbr/TNW-CATE.":[192]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4286224250","counts_by_year":[],"updated_date":"2024-12-15T23:11:57.774284","created_date":"2022-07-21"}