{"id":"https://openalex.org/W4286231797","doi":"https://doi.org/10.48550/arxiv.2207.08975","title":"Superficial White Matter Analysis: An Efficient Point-cloud-based Deep Learning Framework with Supervised Contrastive Learning for Consistent Tractography Parcellation across Populations and dMRI Acquisitions","display_name":"Superficial White Matter Analysis: An Efficient Point-cloud-based Deep Learning Framework with Supervised Contrastive Learning for Consistent Tractography Parcellation across Populations and dMRI Acquisitions","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4286231797","doi":"https://doi.org/10.48550/arxiv.2207.08975"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.08975","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.08975","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003841843","display_name":"Tengfei Xue","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xue, Tengfei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100403473","display_name":"Fan Zhang","orcid":"https://orcid.org/0000-0002-5032-6039"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Fan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080719369","display_name":"Chaoyi Zhang","orcid":"https://orcid.org/0000-0001-8492-9711"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Chaoyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5116820688","display_name":"Yuqian Chen","orcid":"https://orcid.org/0009-0005-5613-2920"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Yuqian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005827205","display_name":"Yang Song","orcid":"https://orcid.org/0000-0001-7438-6290"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022796764","display_name":"Alexandra J. Golby","orcid":"https://orcid.org/0000-0001-8461-9561"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Golby, Alexandra J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012499268","display_name":"Nikos Makris","orcid":"https://orcid.org/0000-0003-0425-3315"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Makris, Nikos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037057278","display_name":"Yogesh Rathi","orcid":"https://orcid.org/0000-0002-9946-2314"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rathi, Yogesh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076697411","display_name":"Weidong Cai","orcid":"https://orcid.org/0000-0003-3706-8896"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cai, Weidong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5082042615","display_name":"Lauren J. O\u2019Donnell","orcid":"https://orcid.org/0000-0003-0197-7801"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"O'Donnell, Lauren J.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11304","display_name":"Advanced Neuroimaging Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11304","display_name":"Advanced Neuroimaging Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12552","display_name":"Fetal and Pediatric Neurological Disorders","score":0.9093,"subfield":{"id":"https://openalex.org/subfields/2735","display_name":"Pediatrics, Perinatology and Child Health"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C84787856","wikidata":"https://www.wikidata.org/wiki/Q3076659","display_name":"Tractography","level":4,"score":0.6107775},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5824263},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.53583354},{"id":"https://openalex.org/C2781192897","wikidata":"https://www.wikidata.org/wiki/Q822050","display_name":"White matter","level":3,"score":0.5240978},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.39789593},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.35758683},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.13346028},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.1077227},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.097237766}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.08975","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.08975","pdf_url":"http://arxiv.org/pdf/2207.08975","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.08975","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.08975","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.65,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4317754102"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4283331829","https://openalex.org/W3102888858","https://openalex.org/W3035690190","https://openalex.org/W2613834872","https://openalex.org/W2593581930","https://openalex.org/W2142608172","https://openalex.org/W2112185786","https://openalex.org/W2081237186","https://openalex.org/W1970951771","https://openalex.org/W1505457826"],"abstract_inverted_index":{"Diffusion":[0],"MRI":[1],"tractography":[2,23,121],"is":[3,92,198],"an":[4,77],"advanced":[5],"imaging":[6],"technique":[7],"that":[8,75],"enables":[9,32,103],"in":[10,187],"vivo":[11],"mapping":[12],"of":[13,36,82,150,196],"the":[14,45,54,185,193],"brain's":[15],"white":[16,47,56],"matter":[17,20,48,57],"connections.":[18],"White":[19,71],"parcellation":[21,41,81,97,176],"classifies":[22],"streamlines":[24,109],"into":[25],"clusters":[26,85,135],"or":[27],"anatomically":[28,137],"meaningful":[29],"tracts.":[30],"It":[31],"quantification":[33],"and":[34,79,99,110,129,136,141,153,158,173,189],"visualization":[35],"whole-brain":[37,87],"tractography.":[38,88],"Currently,":[39],"most":[40],"methods":[42,52],"focus":[43],"on":[44,118,145,178],"deep":[46],"(DWM),":[49],"whereas":[50],"fewer":[51],"address":[53],"superficial":[55],"(SWM)":[58],"due":[59],"to":[60,94,165],"its":[61],"complexity.":[62],"We":[63,114],"propose":[64],"a":[65,119],"novel":[66],"two-stage":[67],"deep-learning-based":[68],"framework,":[69],"Superficial":[70],"Matter":[72],"Analysis":[73],"(SupWMA),":[74],"performs":[76],"efficient":[78],"consistent":[80,172],"198":[83],"SWM":[84,96,134,175],"from":[86,126],"A":[89],"point-cloud-based":[90],"network":[91],"adapted":[93],"our":[95,116],"task,":[98],"supervised":[100],"contrastive":[101],"learning":[102],"more":[104],"discriminative":[105],"representations":[106],"between":[107],"plausible":[108],"outliers":[111],"for":[112],"SWM.":[113],"train":[115],"model":[117],"large-scale":[120],"dataset":[122],"including":[123],"streamline":[124,139],"samples":[125],"labeled":[127],"long-":[128],"medium-range":[130],"(over":[131],"40":[132],"mm)":[133],"implausible":[138],"samples,":[140],"we":[142],"perform":[143],"testing":[144],"six":[146],"independently":[147],"acquired":[148],"datasets":[149],"different":[151],"ages":[152],"health":[154,188],"conditions":[155],"(including":[156],"neonates":[157],"patients":[159],"with":[160],"space-occupying":[161],"brain":[162],"tumors).":[163],"Compared":[164],"several":[166],"state-of-the-art":[167],"methods,":[168],"SupWMA":[169,197],"obtains":[170],"highly":[171],"accurate":[174],"results":[177],"all":[179],"datasets,":[180],"showing":[181],"good":[182],"generalization":[183],"across":[184],"lifespan":[186],"disease.":[190],"In":[191],"addition,":[192],"computational":[194],"speed":[195],"much":[199],"faster":[200],"than":[201],"other":[202],"methods.":[203]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4286231797","counts_by_year":[],"updated_date":"2025-03-29T08:18:09.656335","created_date":"2022-07-21"}