{"id":"https://openalex.org/W4286233944","doi":"https://doi.org/10.48550/arxiv.2207.07922","title":"Learning Quality-aware Dynamic Memory for Video Object Segmentation","display_name":"Learning Quality-aware Dynamic Memory for Video Object Segmentation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4286233944","doi":"https://doi.org/10.48550/arxiv.2207.07922"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.07922","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.07922","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100371161","display_name":"Yong Liu","orcid":"https://orcid.org/0009-0007-7205-2909"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Yong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100566897","display_name":"Ran Yu","orcid":"https://orcid.org/0009-0008-1017-7332"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Ran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100651693","display_name":"Fei Yin","orcid":"https://orcid.org/0000-0001-8218-7558"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yin, Fei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100750790","display_name":"Xinyuan Zhao","orcid":"https://orcid.org/0000-0003-2388-5967"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Xinyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002311337","display_name":"Wei Zhao","orcid":"https://orcid.org/0000-0002-6268-2559"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028709578","display_name":"Weihao Xia","orcid":"https://orcid.org/0000-0003-0087-3525"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xia, Weihao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5020953714","display_name":"Yujiu Yang","orcid":"https://orcid.org/0000-0002-6427-1024"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Yujiu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.48128834}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8785615},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7673987},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.5722326},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56479764},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5358378},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.49993992},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.48128834},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.46978322},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.44875818},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.44094762},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.06994885},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.07922","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.07922","pdf_url":"http://arxiv.org/pdf/2207.07922","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.07922","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.07922","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389858081","https://openalex.org/W4379231730","https://openalex.org/W4304185162","https://openalex.org/W3125207769","https://openalex.org/W3006282800","https://openalex.org/W2462100143","https://openalex.org/W2061685118","https://openalex.org/W1972035260","https://openalex.org/W1770503332","https://openalex.org/W1603736412"],"abstract_inverted_index":{"Recently,":[0],"several":[1],"spatial-temporal":[2],"memory-based":[3,189],"methods":[4,190],"have":[5],"verified":[6],"that":[7,178],"storing":[8],"intermediate":[9],"frames":[10,38,50,82,128],"and":[11,35,69,160,171,194],"their":[12],"masks":[13,54],"as":[14,191],"memory":[15,37,81,121,148],"are":[16,55],"helpful":[17],"to":[18,43,57,62,96,111,123,129,144,150,188],"segment":[19],"target":[20],"objects":[21],"in":[22],"videos.":[23,99],"However,":[24],"they":[25],"mainly":[26],"focus":[27],"on":[28,168],"better":[29],"matching":[30],"between":[31],"the":[32,36,44,47,72,77,84,91,94,113,120,131,138,147,152,155,179],"current":[33],"frame":[34,87],"without":[39],"explicitly":[40],"paying":[41],"attention":[42],"quality":[45,115,140],"of":[46,80,86,93,116,154],"memory.":[48],"Therefore,":[49],"with":[51,83,141],"poor":[52],"segmentation":[53,64,73,114,139],"prone":[56],"be":[58,186],"memorized,":[59],"which":[60],"leads":[61],"a":[63,105],"mask":[65],"error":[66,132],"accumulation":[67,133],"problem":[68],"further":[70],"affect":[71],"performance.":[74,197],"In":[75],"addition,":[76],"linear":[78],"increase":[79],"growth":[85],"number":[88],"also":[89],"limits":[90],"ability":[92],"models":[95],"handle":[97],"long":[98],"To":[100],"this":[101],"end,":[102],"we":[103,136],"propose":[104],"Quality-aware":[106],"Dynamic":[107],"Memory":[108],"Network":[109],"(QDMN)":[110],"evaluate":[112],"each":[117],"frame,":[118],"allowing":[119],"bank":[122,149],"selectively":[124],"store":[125],"accurately":[126],"segmented":[127],"prevent":[130],"problem.":[134],"Then,":[135],"combine":[137],"temporal":[142],"consistency":[143],"dynamically":[145],"update":[146],"improve":[151],"practicability":[153],"models.":[156],"Without":[157],"any":[158],"bells":[159],"whistles,":[161],"our":[162],"QDMN":[163],"achieves":[164],"new":[165],"state-of-the-art":[166],"performance":[167],"both":[169],"DAVIS":[170],"YouTube-VOS":[172],"benchmarks.":[173],"Moreover,":[174],"extensive":[175],"experiments":[176],"demonstrate":[177],"proposed":[180],"Quality":[181],"Assessment":[182],"Module":[183],"(QAM)":[184],"can":[185],"applied":[187],"generic":[192],"plugins":[193],"significantly":[195],"improves":[196],"Our":[198],"source":[199],"code":[200],"is":[201],"available":[202],"at":[203],"https://github.com/workforai/QDMN.":[204]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4286233944","counts_by_year":[],"updated_date":"2025-03-02T00:10:34.241784","created_date":"2022-07-21"}