{"id":"https://openalex.org/W4285595566","doi":"https://doi.org/10.48550/arxiv.2207.06968","title":"DASS: Differentiable Architecture Search for Sparse neural networks","display_name":"DASS: Differentiable Architecture Search for Sparse neural networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4285595566","doi":"https://doi.org/10.48550/arxiv.2207.06968"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.06968","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://arxiv.org/abs/2207.06968","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103068308","display_name":"Hamid Mousavi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mousavi, Hamid","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001642408","display_name":"Mohammad Loni","orcid":"https://orcid.org/0000-0002-9704-7117"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Loni, Mohammad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083753701","display_name":"Mina Alibeigi","orcid":"https://orcid.org/0000-0002-5078-0194"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alibeigi, Mina","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5063193249","display_name":"Masoud Daneshtalab","orcid":"https://orcid.org/0000-0001-6289-1521"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Daneshtalab, Masoud","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.8306986}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.8306986},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7387861},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.6136868},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.49406508},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4718366},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42996854},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.06968","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3609385","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3609385","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.06968","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.06968","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.58,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4285595566","https://openalex.org/W4386580453"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4293226380","https://openalex.org/W4206442282","https://openalex.org/W2594301978","https://openalex.org/W2384505857","https://openalex.org/W2379704676","https://openalex.org/W2378744544","https://openalex.org/W2373300491","https://openalex.org/W2355171581","https://openalex.org/W2145253956","https://openalex.org/W1998810860"],"abstract_inverted_index":{"The":[0,79,187],"deployment":[1],"of":[2,44,182,200,228,237,241],"Deep":[3],"Neural":[4],"Networks":[5],"(DNNs)":[6],"on":[7,197,220],"edge":[8],"devices":[9],"is":[10,82,102],"hindered":[11],"by":[12,65,132],"the":[13,41,59,84,139,144,160,194,198,201,216,221,235,238],"substantial":[14],"gap":[15],"between":[16],"performance":[17,229],"requirements":[18],"and":[19,96,107,142,153,184,223,230],"available":[20],"processing":[21],"power.":[22],"While":[23],"recent":[24],"research":[25],"has":[26],"made":[27,103],"significant":[28],"strides":[29],"in":[30,92,156,215],"developing":[31],"pruning":[32,54,73],"methods":[33,69],"to":[34,77,113,123,138,158,163,177,245],"build":[35],"a":[36,98,120,172],"sparse":[37,90,136,165,179,218,239],"network":[38],"for":[39,62,104,125],"reducing":[40],"computing":[42],"overhead":[43],"DNNs,":[45],"there":[46],"remains":[47],"considerable":[48],"accuracy":[49,236],"loss,":[50],"especially":[51],"at":[52],"high":[53],"ratios.":[55],"We":[56,129,147],"find":[57],"that":[58,83,101,208],"architectures":[60,91,211],"designed":[61],"dense":[63,105],"networks":[64,106,219],"differentiable":[66],"architecture":[67,195],"search":[68,94,99,124,140,145,161,174,189,202,210],"are":[70,75],"ineffective":[71],"when":[72],"mechanisms":[74],"applied":[76],"them.":[78],"main":[80],"reason":[81],"current":[85],"method":[86,122],"does":[87,108],"not":[88,109],"support":[89],"their":[93],"space":[95,141,162,175,203],"uses":[97],"objective":[100,190],"pay":[110],"any":[111],"attention":[112],"sparsity.":[114],"In":[115,167,226],"this":[116,131],"paper,":[117],"we":[118],"propose":[119,148],"new":[121,135],"sparsity-friendly":[126],"neural":[127],"architectures.":[128],"do":[130],"adding":[133],"two":[134,149],"operations":[137,155,170],"modifying":[143],"objective.":[146],"novel":[150],"parametric":[151,180],"SparseConv":[152],"SparseLinear":[154],"order":[157],"expand":[159],"include":[164],"operations.":[166,186,204],"particular,":[168],"these":[169],"make":[171],"flexible":[173],"due":[176],"using":[178],"versions":[181],"linear":[183],"convolution":[185],"proposed":[188],"lets":[191],"us":[192],"train":[193],"based":[196],"sparsity":[199],"Quantitative":[205],"analyses":[206],"demonstrate":[207],"our":[209],"outperform":[212],"those":[213],"used":[214],"stateof-the-art":[217],"CIFAR-10":[222],"ImageNet":[224],"datasets.":[225],"terms":[227],"hardware":[231],"effectiveness,":[232],"DASS":[233],"increases":[234],"version":[240],"MobileNet-v2":[242],"from":[243],"73.44%":[244],"81.35%":[246],"(+7.91%":[247],"improvement)":[248],"with":[249],"3.87x":[250],"faster":[251],"inference":[252],"time.":[253]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285595566","counts_by_year":[],"updated_date":"2025-03-03T09:24:15.822240","created_date":"2022-07-16"}