{"id":"https://openalex.org/W4285428759","doi":"https://doi.org/10.48550/arxiv.2207.05510","title":"Transferability-Guided Cross-Domain Cross-Task Transfer Learning","display_name":"Transferability-Guided Cross-Domain Cross-Task Transfer Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4285428759","doi":"https://doi.org/10.48550/arxiv.2207.05510"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.05510","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.05510","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100524244","display_name":"Yang Tan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tan, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114377934","display_name":"Yang Li","orcid":"https://orcid.org/0000-0002-2053-6393"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088293566","display_name":"Shao\u2010Lun Huang","orcid":"https://orcid.org/0000-0003-2827-4022"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Shao-Lun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100363146","display_name":"Xiao\u2013Ping Zhang","orcid":"https://orcid.org/0000-0001-5241-0069"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Xiao-Ping","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.60916,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9676,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9095,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transferability","display_name":"Transferability","score":0.82113016},{"id":"https://openalex.org/keywords/cross-entropy","display_name":"Cross entropy","score":0.58398855},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.47464925},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.43581873}],"concepts":[{"id":"https://openalex.org/C61272859","wikidata":"https://www.wikidata.org/wiki/Q7834031","display_name":"Transferability","level":3,"score":0.82113016},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73045325},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.6038091},{"id":"https://openalex.org/C167981619","wikidata":"https://www.wikidata.org/wiki/Q1685498","display_name":"Cross entropy","level":3,"score":0.58398855},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.4901167},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.48080364},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.47464925},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.43581873},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43047863},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.389669},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33215028},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.24153271},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C140331021","wikidata":"https://www.wikidata.org/wiki/Q1868104","display_name":"Logit","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.05510","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.05510","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.05510","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390884647","https://openalex.org/W4234629551","https://openalex.org/W4229699405","https://openalex.org/W2994927414","https://openalex.org/W2355491300","https://openalex.org/W2216382288","https://openalex.org/W2161221533","https://openalex.org/W2028856635","https://openalex.org/W2011110943","https://openalex.org/W1666484574"],"abstract_inverted_index":{"We":[0],"propose":[1],"two":[2,183],"novel":[3],"transferability":[4,54,74,116,131],"metrics":[5,59,160,184],"F-OTCE":[6,72,134,154,213],"(Fast":[7],"Optimal":[8,79],"Transport":[9,80],"based":[10],"Conditional":[11,98],"Entropy)":[12],"and":[13,34,85,88,102,155,163,199],"JC-OTCE":[14,128,156],"(Joint":[15],"Correspondence":[16],"OTCE)":[17],"to":[18,35,94,113,197,231],"evaluate":[19],"how":[20],"much":[21,68],"the":[22,28,31,46,52,91,96,115,118,124,130,140,170,176,182,186,191,218,222],"source":[23,84,101,119,223],"model":[24,120,224],"(task)":[25],"can":[26,65,106],"benefit":[27],"learning":[29],"of":[30,117,133,179,190,205,221],"target":[32,86,103,125],"task":[33],"learn":[36],"more":[37,69],"transferable":[38],"representations":[39],"for":[40,202],"cross-domain":[41],"cross-task":[42],"transfer":[43,172,219],"learning.":[44],"Unlike":[45],"existing":[47],"metric":[48],"that":[49,63,153],"requires":[50],"evaluating":[51],"empirical":[53],"on":[55,123,217],"auxiliary":[56,180],"tasks,":[57,181],"our":[58],"are":[60],"auxiliary-free":[61,159],"such":[62],"they":[64],"be":[66],"computed":[67],"efficiently.":[70],"Specifically,":[71],"estimates":[73],"by":[75,135,161],"first":[76],"solving":[77],"an":[78],"(OT)":[81],"problem":[82],"between":[83,100],"distributions,":[87],"then":[89],"uses":[90],"optimal":[92],"coupling":[93],"compute":[95],"Negative":[97],"Entropy":[99],"labels.":[104],"It":[105],"also":[107],"serve":[108],"as":[109,209],"a":[110,203,210],"loss":[111,211],"function":[112],"maximize":[114],"before":[121],"finetuning":[122],"task.":[126],"Meanwhile,":[127],"improves":[129],"robustness":[132],"including":[136],"label":[137],"distances":[138],"in":[139,166,225],"OT":[141],"problem,":[142],"though":[143],"it":[144],"may":[145],"incur":[146],"additional":[147],"computation":[148,188],"cost.":[149],"Extensive":[150],"experiments":[151],"demonstrate":[152],"outperform":[157],"state-of-the-art":[158],"18.85%":[162],"28.88%,":[164],"respectively":[165],"correlation":[167],"coefficient":[168],"with":[169,229],"ground-truth":[171],"accuracy.":[173],"By":[174],"eliminating":[175],"training":[177],"cost":[178],"reduces":[185],"total":[187],"time":[189],"previous":[192],"method":[193],"from":[194],"43":[195],"minutes":[196],"9.32s":[198],"10.78s,":[200],"respectively,":[201],"pair":[204],"tasks.":[206],"When":[207],"used":[208],"function,":[212],"shows":[214],"consistent":[215],"improvements":[216],"accuracy":[220,233],"few-shot":[226],"classification":[227],"experiments,":[228],"up":[230],"4.41%":[232],"gain.":[234]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285428759","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-22T22:46:29.371878","created_date":"2022-07-15"}