{"id":"https://openalex.org/W4285019120","doi":"https://doi.org/10.48550/arxiv.2207.03552","title":"An Embedding-Dynamic Approach to Self-supervised Learning","display_name":"An Embedding-Dynamic Approach to Self-supervised Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4285019120","doi":"https://doi.org/10.48550/arxiv.2207.03552"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.03552","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.03552","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009328122","display_name":"Suhong Moon","orcid":"https://orcid.org/0000-0001-5886-8281"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moon, Suhong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035271748","display_name":"Domas Buracas","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Buracas, Domas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048067770","display_name":"Seunghyun Park","orcid":"https://orcid.org/0000-0001-5260-1252"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Park, Seunghyun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061842716","display_name":"Jinkyu Kim","orcid":"https://orcid.org/0000-0001-6520-2074"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Jinkyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5089723214","display_name":"John Canny","orcid":"https://orcid.org/0000-0002-7161-7927"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Canny, John","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9854,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12874","display_name":"Digital Imaging for Blood Diseases","score":0.9845,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/centroid","display_name":"Centroid","score":0.75732684},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.60878235}],"concepts":[{"id":"https://openalex.org/C146599234","wikidata":"https://www.wikidata.org/wiki/Q511093","display_name":"Centroid","level":2,"score":0.75732684},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.74881876},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.60878235},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5338064},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.51640373},{"id":"https://openalex.org/C112401455","wikidata":"https://www.wikidata.org/wiki/Q178036","display_name":"Brownian motion","level":2,"score":0.5157438},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.45104265},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.4344011},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36777595},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34805977},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33874738},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.33586884},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.078523755}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.03552","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.03552","pdf_url":"http://arxiv.org/pdf/2207.03552","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.03552","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.03552","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4242386713","https://openalex.org/W3165040664","https://openalex.org/W3122652148","https://openalex.org/W3088649123","https://openalex.org/W2996505764","https://openalex.org/W2381926679","https://openalex.org/W2350539780","https://openalex.org/W2082644203","https://openalex.org/W2007009951","https://openalex.org/W1583866266"],"abstract_inverted_index":{"A":[0,17],"number":[1],"of":[2,21,32,48,64,94,102,115,141,196],"recent":[3],"self-supervised":[4],"learning":[5,204],"methods":[6,135,229],"have":[7,23],"shown":[8],"impressive":[9],"performance":[10,132,195,233],"on":[11,61,198],"image":[12,106,166],"classification":[13,194],"and":[14,53,84,136,214,234],"other":[15,134,142,228],"tasks.":[16],"somewhat":[18],"bewildering":[19],"variety":[20],"techniques":[22],"been":[24],"used,":[25],"not":[26,138],"always":[27],"with":[28,112],"a":[29,58,76,85,91,104,122,154,173,187,240],"clear":[30],"understanding":[31],"the":[33,46,100,116,179,236],"reasons":[34],"for":[35,73,152],"their":[36,170,232],"benefits,":[37],"especially":[38],"when":[39],"used":[40],"in":[41],"combination.":[42],"Here":[43],"we":[44,219],"treat":[45],"embeddings":[47,168],"images":[49],"as":[50,57,200,202],"point":[51],"particles":[52],"consider":[54],"model":[55,68],"optimization":[56],"dynamic":[59,67,97],"process":[60],"this":[62],"system":[63,181],"particles.":[65,95],"Our":[66],"combines":[69],"an":[70,160],"attractive":[71,161],"force":[72,79,88,126,162],"similar":[74],"images,":[75],"locally":[77],"dispersive":[78,87,125],"to":[80,89,163,227],"avoid":[81],"local":[82,124],"collapse,":[83],"global":[86],"achieve":[90],"globally-homogeneous":[92],"distribution":[93],"The":[96,145],"perspective":[98],"highlights":[99],"advantage":[101],"using":[103],"delayed-parameter":[105],"embedding":[107],"(a":[108],"la":[109],"BYOL)":[110],"together":[111],"multiple":[113],"views":[114],"same":[117],"image.":[118],"It":[119],"also":[120,220],"uses":[121],"purely-dynamic":[123],"(Brownian":[127],"motion)":[128],"that":[129,222],"shows":[130],"improved":[131],"over":[133],"does":[137],"require":[139],"knowledge":[140],"particle":[143,180],"coordinates.":[144],"method":[146],"is":[147],"called":[148],"MSBReg":[149,197],"which":[150,158,177],"stands":[151],"(i)":[153],"Multiview":[155],"centroid":[156],"loss,":[157,176],"applies":[159],"pull":[164],"different":[165],"view":[167],"toward":[169,182],"centroid,":[171],"(ii)":[172],"Singular":[174],"value":[175],"pushes":[178],"spatially":[183],"homogeneous":[184],"density,":[185],"(iii)":[186],"Brownian":[188],"diffusive":[189],"loss.":[190],"We":[191],"evaluate":[192],"downstream":[193],"ImageNet":[199],"well":[201],"transfer":[203],"tasks":[205],"including":[206],"fine-grained":[207],"classification,":[208,211],"multi-class":[209],"object":[210,212],"detection,":[213],"instance":[215],"segmentation.":[216],"In":[217],"addition,":[218],"show":[221],"applying":[223],"our":[224],"regularization":[225],"term":[226],"further":[230],"improves":[231],"stabilize":[235],"training":[237],"by":[238],"preventing":[239],"mode":[241],"collapse.":[242]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285019120","counts_by_year":[],"updated_date":"2025-03-04T15:41:02.930606","created_date":"2022-07-12"}