{"id":"https://openalex.org/W4283828778","doi":"https://doi.org/10.48550/arxiv.2207.01172","title":"TANet: Transformer-based Asymmetric Network for RGB-D Salient Object Detection","display_name":"TANet: Transformer-based Asymmetric Network for RGB-D Salient Object Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283828778","doi":"https://doi.org/10.48550/arxiv.2207.01172"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.01172","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.01172","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100353377","display_name":"Chang Liu","orcid":"https://orcid.org/0000-0003-4959-7541"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Chang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103263419","display_name":"Gang Yang","orcid":"https://orcid.org/0000-0002-1911-0598"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Gang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100400130","display_name":"Shuo Wang","orcid":"https://orcid.org/0000-0001-7851-3824"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Shuo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077716716","display_name":"Hangxu Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Hangxu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100640695","display_name":"Yunhua Zhang","orcid":"https://orcid.org/0000-0003-3567-215X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Yunhua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5115602740","display_name":"Yutao Wang","orcid":"https://orcid.org/0000-0003-2422-5143"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yutao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.633892,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.81365}],"concepts":[{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.81365},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7784485},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.6439026},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.62211704},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6074474},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5444206},{"id":"https://openalex.org/C2780719617","wikidata":"https://www.wikidata.org/wiki/Q1030752","display_name":"Salient","level":2,"score":0.49370727},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.48204908},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3542282},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.11609423},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08918074},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.01172","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.01172","pdf_url":"http://arxiv.org/pdf/2207.01172","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.01172","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.01172","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394266730","https://openalex.org/W4327728159","https://openalex.org/W2912751582","https://openalex.org/W28991112","https://openalex.org/W2545348020","https://openalex.org/W2370726991","https://openalex.org/W2369710579","https://openalex.org/W2329500892","https://openalex.org/W2053783616","https://openalex.org/W1990856605"],"abstract_inverted_index":{"Existing":[0],"RGB-D":[1,176],"SOD":[2],"methods":[3,177],"mainly":[4],"rely":[5],"on":[6,178],"a":[7,58,89,127],"symmetric":[8,27,44],"two-stream":[9,45],"CNN-based":[10],"network":[11,29,61],"to":[12,63,79,94,160],"extract":[13,80,95],"RGB":[14,85,137],"and":[15,87,135,138,153],"depth":[16,100,139],"channel":[17],"features":[18,140],"separately.":[19],"However,":[20],"there":[21],"are":[22],"two":[23],"problems":[24],"with":[25,141],"the":[26,32,43,48,65,71,111,116],"conventional":[28],"structure:":[30],"first,":[31],"ability":[33],"of":[34,76,113],"CNN":[35,91],"in":[36,115],"learning":[37],"global":[38,81],"contexts":[39],"is":[40],"limited;":[41],"second,":[42],"structure":[46,97],"ignores":[47],"inherent":[49],"differences":[50],"between":[51],"modalities.":[52],"In":[53],"this":[54],"paper,":[55],"we":[56,125,145],"propose":[57,154],"Transformer-based":[59],"asymmetric":[60,105],"(TANet)":[62],"tackle":[64],"issues":[66],"mentioned":[67],"above.":[68],"We":[69],"employ":[70],"powerful":[72],"feature":[73,129],"extraction":[74],"capability":[75],"Transformer":[77],"(PVTv2)":[78],"semantic":[82],"information":[83,98],"from":[84,99],"data":[86,101],"design":[88,126],"lightweight":[90],"backbone":[92],"(LWDepthNet)":[93],"spatial":[96],"without":[102,121],"pre-training.":[103],"The":[104],"hybrid":[106],"encoder":[107],"(AHE)":[108],"effectively":[109],"reduces":[110],"number":[112],"parameters":[114],"model":[117],"while":[118],"increasing":[119],"speed":[120],"sacrificing":[122],"performance.":[123],"Then,":[124],"cross-modal":[128],"fusion":[130],"module":[131,158],"(CMFFM),":[132],"which":[133],"enhances":[134],"fuses":[136],"each":[142],"other.":[143],"Finally,":[144],"add":[146],"edge":[147,156],"prediction":[148],"as":[149],"an":[150,155],"auxiliary":[151],"task":[152],"enhancement":[157],"(EEM)":[159],"generate":[161],"sharper":[162],"contours.":[163],"Extensive":[164],"experiments":[165],"demonstrate":[166],"that":[167],"our":[168],"method":[169],"achieves":[170],"superior":[171],"performance":[172],"over":[173],"14":[174],"state-of-the-art":[175],"six":[179],"public":[180],"datasets.":[181],"Our":[182],"code":[183],"will":[184],"be":[185],"released":[186],"at":[187],"https://github.com/lc012463/TANet.":[188]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283828778","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-22T22:50:00.249466","created_date":"2022-07-07"}