{"id":"https://openalex.org/W4283825631","doi":"https://doi.org/10.48550/arxiv.2207.01019","title":"Comparative Analysis of Time Series Forecasting Approaches for Household Electricity Consumption Prediction","display_name":"Comparative Analysis of Time Series Forecasting Approaches for Household Electricity Consumption Prediction","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283825631","doi":"https://doi.org/10.48550/arxiv.2207.01019"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.01019","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2207.01019","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100439310","display_name":"Muhammad Bilal","orcid":"https://orcid.org/0000-0001-5388-3183"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bilal, Muhammad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100740723","display_name":"Hyeok Kim","orcid":"https://orcid.org/0000-0001-9184-5882"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Hyeok","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101454385","display_name":"Muhammad Fayaz","orcid":"https://orcid.org/0000-0001-8957-5772"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fayaz, Muhammad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5000269374","display_name":"Pravin Pawar","orcid":"https://orcid.org/0000-0001-5157-5451"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pawar, Pravin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.909243,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":79,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12617","display_name":"Energy, Environment, and Transportation Policies","score":0.9774,"subfield":{"id":"https://openalex.org/subfields/2105","display_name":"Renewable Energy, Sustainability and the Environment"},"field":{"id":"https://openalex.org/fields/21","display_name":"Energy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9493,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.540648},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.48574144}],"concepts":[{"id":"https://openalex.org/C24338571","wikidata":"https://www.wikidata.org/wiki/Q2566298","display_name":"Autoregressive integrated moving average","level":3,"score":0.78979063},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.60654235},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.540648},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5361737},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5318555},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.51184076},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.48574144},{"id":"https://openalex.org/C2780165032","wikidata":"https://www.wikidata.org/wiki/Q16869822","display_name":"Energy consumption","level":2,"score":0.47704333},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.46468},{"id":"https://openalex.org/C206658404","wikidata":"https://www.wikidata.org/wiki/Q12725","display_name":"Electricity","level":2,"score":0.42620966},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.28694504},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.2301296},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1693027},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.15622401},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.01019","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2207.01019","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2207.01019","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.91,"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391216528","https://openalex.org/W4313123484","https://openalex.org/W4312561791","https://openalex.org/W4312309719","https://openalex.org/W4200142652","https://openalex.org/W3175321409","https://openalex.org/W2980748541","https://openalex.org/W2389894046","https://openalex.org/W2215717369","https://openalex.org/W2146461990"],"abstract_inverted_index":{"As":[0],"a":[1,44,64],"result":[2],"of":[3,34,47,56,122,142],"increasing":[4],"population":[5],"and":[6,31,74,101,113,128,154],"globalization,":[7],"the":[8,35,136,140],"demand":[9],"for":[10,25,52,139],"energy":[11,17,36,58,77,120,143],"has":[12,20],"greatly":[13],"risen.":[14],"Therefore,":[15],"accurate":[16],"consumption":[18,78,121,144],"forecasting":[19,55,110,141],"become":[21],"an":[22],"essential":[23],"prerequisite":[24],"government":[26],"planning,":[27],"reducing":[28],"power":[29],"wastage":[30],"stable":[32],"operation":[33],"management":[37],"system.":[38],"In":[39],"this":[40],"work":[41],"we":[42,61,105],"present":[43],"comparative":[45],"analysis":[46],"major":[48],"machine":[49],"learning":[50],"models":[51,71,87],"time":[53,108],"series":[54,109],"household":[57,76,119],"consumption.":[59],"Specifically,":[60],"use":[62],"Weka,":[63],"data":[65,83],"mining":[66],"tool":[67],"to":[68,117],"first":[69],"apply":[70],"on":[72],"hourly":[73],"daily":[75],"datasets":[79],"available":[80],"from":[81],"Kaggle":[82],"science":[84],"community.":[85],"The":[86],"applied":[88],"are:":[89],"Multilayer":[90,152],"Perceptron,":[91],"K":[92],"Nearest":[93],"Neighbor":[94],"regression,":[95],"Support":[96,147],"Vector":[97,148],"Regression,":[98,100],"Linear":[99],"Gaussian":[102,155],"Processes.":[103],"Secondly,":[104],"also":[106],"implemented":[107],"models,":[111],"ARIMA":[112],"VAR,":[114],"in":[115],"python":[116],"forecast":[118],"selected":[123],"South":[124],"Korean":[125],"households":[126],"with":[127],"without":[129],"weather":[130],"data.":[131],"Our":[132],"results":[133],"show":[134],"that":[135],"best":[137],"methods":[138],"prediction":[145],"are":[146],"Regression":[149],"followed":[150],"by":[151],"Perceptron":[153],"Process":[156],"Regression.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283825631","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1}],"updated_date":"2025-03-23T16:12:28.563549","created_date":"2022-07-07"}