{"id":"https://openalex.org/W4283750797","doi":"https://doi.org/10.48550/arxiv.2206.14687","title":"Multi-scale Physical Representations for Approximating PDE Solutions with Graph Neural Operators","display_name":"Multi-scale Physical Representations for Approximating PDE Solutions with Graph Neural Operators","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283750797","doi":"https://doi.org/10.48550/arxiv.2206.14687"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.14687","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.14687","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055709758","display_name":"L\u00e9on Migus","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Migus, L\u00e9on","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063984240","display_name":"Yuan Yin","orcid":"https://orcid.org/0000-0003-1515-0696"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yin, Yuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075131621","display_name":"Jocelyn Ahmed Mazari","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mazari, Jocelyn Ahmed","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5113667126","display_name":"Patrick Gallinari","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gallinari, Patrick","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.934783,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13286","display_name":"Modeling and Simulation Systems","score":0.9177,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/physical-system","display_name":"Physical system","score":0.5203073},{"id":"https://openalex.org/keywords/schema","display_name":"Schema (genetic algorithms)","score":0.47991857},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.44878083}],"concepts":[{"id":"https://openalex.org/C31487907","wikidata":"https://www.wikidata.org/wiki/Q1154597","display_name":"Polygon mesh","level":2,"score":0.6753934},{"id":"https://openalex.org/C93779851","wikidata":"https://www.wikidata.org/wiki/Q271977","display_name":"Partial differential equation","level":2,"score":0.67501944},{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.6164381},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56415546},{"id":"https://openalex.org/C116672817","wikidata":"https://www.wikidata.org/wiki/Q1454986","display_name":"Physical system","level":2,"score":0.5203073},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.48531407},{"id":"https://openalex.org/C52146309","wikidata":"https://www.wikidata.org/wiki/Q7431116","display_name":"Schema (genetic algorithms)","level":2,"score":0.47991857},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.44878083},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.4386786},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.41972506},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32661283},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.19932687},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.18119487},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.14374456},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.13303626},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.14687","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.science/hal-03709247","pdf_url":"https://hal.science/hal-03709247/document","source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.14687","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.14687","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4313703117","https://openalex.org/W2366350639","https://openalex.org/W2364741597","https://openalex.org/W2087496541","https://openalex.org/W2085564391","https://openalex.org/W2042049060","https://openalex.org/W2028455732","https://openalex.org/W2006251942","https://openalex.org/W1984758362","https://openalex.org/W1557607869"],"abstract_inverted_index":{"Representing":[0],"physical":[1,23,39,93],"signals":[2],"at":[3,34],"different":[4],"scales":[5],"is":[6],"among":[7],"the":[8,35,52],"most":[9],"challenging":[10],"problems":[11],"in":[12,92],"engineering.":[13],"Several":[14],"multi-scale":[15],"modeling":[16,90],"tools":[17,32],"have":[18,47],"been":[19,48],"developed":[20],"to":[21,50,58],"describe":[22],"systems":[24],"governed":[25],"by":[26],"\\emph{Partial":[27],"Differential":[28],"Equations}":[29],"(PDEs).":[30],"These":[31,79],"are":[33,69,81,87],"crossroad":[36],"of":[37,54],"principled":[38],"models":[40,46],"and":[41,132],"numerical":[42,59],"schema.":[43],"Recently,":[44],"data-driven":[45,64],"introduced":[49],"speed-up":[51],"approximation":[53],"PDE":[55],"solutions":[56],"compared":[57],"solvers.":[60],"Among":[61],"these":[62],"recent":[63],"methods,":[65],"neural":[66],"integral":[67,104],"operators":[68,106],"a":[70,74],"class":[71],"that":[72,107],"learn":[73],"mapping":[75],"between":[76],"function":[77],"spaces.":[78],"functions":[80],"discretized":[82],"on":[83],"graphs":[84],"(meshes)":[85],"which":[86],"appropriate":[88],"for":[89],"interactions":[91],"phenomena.":[94],"In":[95],"this":[96],"work,":[97],"we":[98,122],"study":[99],"three":[100],"multi-resolution":[101],"schema":[102],"with":[103,111,127],"kernel":[105],"can":[108],"be":[109],"approximated":[110],"\\emph{Message":[112],"Passing":[113],"Graph":[114],"Neural":[115],"Networks}":[116],"(MPGNNs).":[117],"To":[118],"validate":[119],"our":[120],"study,":[121],"make":[123],"extensive":[124],"MPGNNs":[125],"experiments":[126],"well-chosen":[128],"metrics":[129],"considering":[130],"steady":[131],"unsteady":[133],"PDEs.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283750797","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-04T21:25:49.801394","created_date":"2022-07-02"}