{"id":"https://openalex.org/W4283730886","doi":"https://doi.org/10.48550/arxiv.2206.13669","title":"Studying Generalization Through Data Averaging","display_name":"Studying Generalization Through Data Averaging","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283730886","doi":"https://doi.org/10.48550/arxiv.2206.13669"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.13669","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.13669","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061190615","display_name":"Carlos Alberto Gomez-Uribe","orcid":"https://orcid.org/0000-0003-0126-7180"},"institutions":[],"countries":[],"is_corresponding":true,"raw_author_name":"Gomez-Uribe, Carlos A.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5061190615"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/expression","display_name":"Expression (computer science)","score":0.47330844},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.46890107},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.43451333}],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.85690504},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5135165},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.50817585},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.486976},{"id":"https://openalex.org/C90559484","wikidata":"https://www.wikidata.org/wiki/Q778379","display_name":"Expression (computer science)","level":2,"score":0.47330844},{"id":"https://openalex.org/C16910744","wikidata":"https://www.wikidata.org/wiki/Q7705759","display_name":"Test data","level":2,"score":0.4725442},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.46890107},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.46531725},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.45751494},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.43451333},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.42201865},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4067688},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.39553383},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.365973},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2294381},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.20691627},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.10410538},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.13669","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.13669","pdf_url":"http://arxiv.org/pdf/2206.13669","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.13669","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.13669","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387896287","https://openalex.org/W4387327236","https://openalex.org/W4309907966","https://openalex.org/W4285337533","https://openalex.org/W3170838353","https://openalex.org/W2982831492","https://openalex.org/W2187490799","https://openalex.org/W2183488467","https://openalex.org/W2028462208","https://openalex.org/W1990237101"],"abstract_inverted_index":{"The":[0],"generalization":[1,27,78,102,137],"of":[2,33,56,96,149],"machine":[3],"learning":[4,15],"models":[5],"has":[6],"a":[7,54,93,100,121,147,164],"complex":[8],"dependence":[9],"on":[10,81,157,163],"the":[11,26,31,51,57,60,65,72,86,136,158],"data,":[12],"model":[13,61,97,140],"and":[14,20,64,68,85,124,139,142],"algorithm.":[16],"We":[17,46,89,152],"study":[18],"train":[19,66,141],"test":[21,74,77,143],"performance,":[22,75],"as":[23,25,53,146],"well":[24],"gap":[28,52,103,138],"given":[29],"by":[30,114],"mean":[32],"their":[34,43],"difference":[35],"over":[36],"different":[37],"data":[38],"set":[39],"samples":[40],"to":[41,110,130],"understand":[42],"``typical\"":[44],"behavior.":[45],"derive":[47],"an":[48],"expression":[49,70],"for":[50,71,92],"function":[55,148],"covariance":[58],"between":[59],"parameter":[62,83,98,111],"distribution":[63,84],"loss,":[67],"another":[69],"average":[73],"showing":[76],"only":[79],"depends":[80],"data-averaged":[82,87],"loss.":[88],"show":[90],"that":[91],"large":[94],"class":[95],"distributions":[99,112],"modified":[101],"is":[104],"always":[105],"non-negative.":[106],"By":[107],"specializing":[108],"further":[109],"produced":[113],"stochastic":[115],"gradient":[116],"descent":[117],"(SGD),":[118],"along":[119],"with":[120],"few":[122],"approximations":[123],"modeling":[125],"considerations,":[126],"we":[127],"are":[128],"able":[129],"predict":[131],"some":[132],"aspects":[133],"about":[134],"how":[135],"performance":[144],"vary":[145],"SGD":[150],"noise.":[151],"evaluate":[153],"these":[154],"predictions":[155],"empirically":[156],"Cifar10":[159],"classification":[160],"task":[161],"based":[162],"ResNet":[165],"architecture.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283730886","counts_by_year":[],"updated_date":"2024-12-09T20:26:08.091055","created_date":"2022-07-01"}