{"id":"https://openalex.org/W4283450620","doi":"https://doi.org/10.48550/arxiv.2206.10698","title":"TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning","display_name":"TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283450620","doi":"https://doi.org/10.48550/arxiv.2206.10698"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10698","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.10698","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009199938","display_name":"Jiachen Zhu","orcid":"https://orcid.org/0000-0003-1325-3552"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Jiachen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024658351","display_name":"Rafael M. Moraes","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moraes, Rafael M.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006165736","display_name":"Serkan Karakulak","orcid":"https://orcid.org/0000-0002-2044-4122"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karakulak, Serkan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009009188","display_name":"Vlad Sobol","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sobol, Vlad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036589430","display_name":"Alfredo Canziani","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Canziani, Alfredo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5001226970","display_name":"Yann LeCun","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"LeCun, Yann","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.824796,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9262,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.43188438}],"concepts":[{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.61978775},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.61906654},{"id":"https://openalex.org/C2776502983","wikidata":"https://www.wikidata.org/wiki/Q690182","display_name":"Contrast (vision)","level":2,"score":0.606249},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.59826565},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.5823041},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5569964},{"id":"https://openalex.org/C190470478","wikidata":"https://www.wikidata.org/wiki/Q2370229","display_name":"Invariant (physics)","level":2,"score":0.54058564},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5224485},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47031608},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.43188438},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3962897},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3607052},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10698","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.10698","pdf_url":"http://arxiv.org/pdf/2206.10698","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.10698","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10698","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390516098","https://openalex.org/W2549990292","https://openalex.org/W2384362569","https://openalex.org/W2358990940","https://openalex.org/W2183306018","https://openalex.org/W2181948922","https://openalex.org/W2093931120","https://openalex.org/W2081900870","https://openalex.org/W2075740387","https://openalex.org/W2069592018"],"abstract_inverted_index":{"We":[0,99],"present":[1],"Transformation":[2],"Invariance":[3],"and":[4,81,103,157],"Covariance":[5],"Contrast":[6],"(TiCo)":[7],"for":[8,96],"self-supervised":[9,17],"visual":[10],"representation":[11],"learning.":[12],"Similar":[13],"to":[14,42,92],"other":[15],"recent":[16],"learning":[18],"methods,":[19],"our":[20,101,130],"method":[21,102,131],"is":[22,90],"based":[23],"on":[24],"maximizing":[25],"the":[26,35,40,49,53,60,64,77,155],"agreement":[27],"among":[28],"embeddings":[29,65],"of":[30,34,63,113,120,150],"different":[31,67],"distorted":[32],"versions":[33],"same":[36],"image,":[37],"which":[38],"pushes":[39],"encoder":[41,54,88],"produce":[43,93],"transformation":[44,78],"invariant":[45],"representations.":[46],"To":[47],"avoid":[48],"trivial":[50],"solution":[51],"where":[52],"generates":[55],"constant":[56],"vectors,":[57],"we":[58,85],"regularize":[59],"covariance":[61,82],"matrix":[62],"from":[66],"images":[68],"by":[69],"penalizing":[70],"low":[71],"rank":[72],"solutions.":[73],"By":[74,153],"jointly":[75],"minimizing":[76],"invariance":[79],"loss":[80],"contrast":[83],"loss,":[84],"get":[86],"an":[87,116],"that":[89,105],"able":[91],"useful":[94],"representations":[95],"downstream":[97],"tasks.":[98],"analyze":[100],"show":[104],"it":[106],"can":[107,143],"be":[108,145],"viewed":[109],"as":[110,147],"a":[111,148],"variant":[112],"MoCo":[114],"with":[115],"implicit":[117],"memory":[118,126],"bank":[119],"unlimited":[121],"size":[122],"at":[123],"no":[124],"extra":[125],"cost.":[127],"This":[128],"makes":[129],"perform":[132],"better":[133],"than":[134],"alternative":[135],"methods":[136,159,170],"when":[137],"using":[138],"small":[139],"batch":[140],"sizes.":[141],"TiCo":[142,161],"also":[144],"seen":[146],"modification":[149],"Barlow":[151],"Twins.":[152],"connecting":[154],"contrastive":[156],"redundancy-reduction":[158],"together,":[160],"gives":[162],"us":[163],"new":[164],"insights":[165],"into":[166],"how":[167],"joint":[168],"embedding":[169],"work.":[171]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283450620","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":9}],"updated_date":"2025-04-24T01:44:20.555083","created_date":"2022-06-26"}