{"id":"https://openalex.org/W4283324004","doi":"https://doi.org/10.48550/arxiv.2206.10451","title":"Winning the Lottery Ahead of Time: Efficient Early Network Pruning","display_name":"Winning the Lottery Ahead of Time: Efficient Early Network Pruning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283324004","doi":"https://doi.org/10.48550/arxiv.2206.10451"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10451","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.10451","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040557964","display_name":"John Rachwan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rachwan, John","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025058751","display_name":"Daniel Z\u00fcgner","orcid":"https://orcid.org/0000-0003-1626-5065"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Z\u00fcgner, Daniel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066588071","display_name":"Bertrand Charpentier","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Charpentier, Bertrand","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110339755","display_name":"Simon Geisler","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Geisler, Simon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079505548","display_name":"Morgane Ayle","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ayle, Morgane","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5074504351","display_name":"Stephan G\u00fcnnemann","orcid":"https://orcid.org/0000-0001-7772-5059"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"G\u00fcnnemann, Stephan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.854089,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.8706187},{"id":"https://openalex.org/keywords/lottery","display_name":"Lottery","score":0.42977196}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.8706187},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80336404},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56385833},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55204546},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.52462256},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.51933634},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.51570827},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4537887},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45083937},{"id":"https://openalex.org/C2777340749","wikidata":"https://www.wikidata.org/wiki/Q6684955","display_name":"Lottery","level":2,"score":0.42977196},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10451","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.10451","pdf_url":"http://arxiv.org/pdf/2206.10451","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.10451","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10451","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2394167907","https://openalex.org/W2368351749","https://openalex.org/W2366147166","https://openalex.org/W2358800538","https://openalex.org/W2357035722","https://openalex.org/W2139765960","https://openalex.org/W2128949092","https://openalex.org/W2066997075","https://openalex.org/W2004731113","https://openalex.org/W1556639976"],"abstract_inverted_index":{"Pruning,":[0],"the":[1,26],"task":[2],"of":[3,28,46,121],"sparsifying":[4],"deep":[5],"neural":[6],"networks,":[7],"received":[8],"increasing":[9],"attention":[10],"recently.":[11],"Although":[12],"state-of-the-art":[13,66],"pruning":[14,39,150],"methods":[15],"extract":[16],"highly":[17],"sparse":[18,31,67,93],"models,":[19],"they":[20],"neglect":[21],"two":[22],"main":[23],"challenges:":[24],"(1)":[25],"process":[27],"finding":[29],"these":[30],"models":[32,68],"is":[33],"often":[34],"very":[35],"expensive;":[36],"(2)":[37],"unstructured":[38],"does":[40],"not":[41],"provide":[42],"benefits":[43],"in":[44,72,81],"terms":[45],"GPU":[47],"memory,":[48],"training":[49,73,147],"time,":[50],"or":[51,70],"carbon":[52],"emissions.":[53],"We":[54,112],"propose":[55],"Early":[56],"Compression":[57],"via":[58],"Gradient":[59],"Flow":[60],"Preservation":[61],"(EarlyCroP),":[62],"which":[63],"efficiently":[64],"extracts":[65],"before":[69],"early":[71],"addressing":[74,85],"challenge":[75,86],"(1),":[76],"and":[77,108,129,137],"can":[78],"be":[79,102],"applied":[80],"a":[82,118],"structured":[83],"manner":[84],"(2).":[87],"This":[88],"enables":[89],"us":[90],"to":[91,142,145],"train":[92],"networks":[94],"on":[95],"commodity":[96],"GPUs":[97],"whose":[98],"dense":[99,146],"versions":[100],"would":[101],"too":[103],"large,":[104],"thereby":[105],"saving":[106],"costs":[107],"reducing":[109],"hardware":[110],"requirements.":[111],"empirically":[113],"show":[114],"that":[115],"EarlyCroP":[116,140],"outperforms":[117],"rich":[119],"set":[120],"baselines":[122],"for":[123],"many":[124],"tasks":[125],"(incl.":[126,131],"classification,":[127],"regression)":[128],"domains":[130],"computer":[132],"vision,":[133],"natural":[134],"language":[135],"processing,":[136],"reinforcment":[138],"learning).":[139],"leads":[141],"accuracy":[143],"comparable":[144],"while":[148],"outperforming":[149],"baselines.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283324004","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-04T21:30:32.866676","created_date":"2022-06-24"}