{"id":"https://openalex.org/W4283332942","doi":"https://doi.org/10.48550/arxiv.2206.10294","title":"Using the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA Images","display_name":"Using the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA Images","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283332942","doi":"https://doi.org/10.48550/arxiv.2206.10294"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10294","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.10294","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027152185","display_name":"Marin Ben\u010devi\u0107","orcid":"https://orcid.org/0000-0003-4294-0781"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ben\u010devi\u0107, Marin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055227189","display_name":"Marija Habijan","orcid":"https://orcid.org/0000-0002-3754-498X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Habijan, Marija","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083837803","display_name":"Irena Gali\u0107","orcid":"https://orcid.org/0000-0002-0211-4568"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gali\u0107, Irena","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5068395991","display_name":"Danilo Babin","orcid":"https://orcid.org/0000-0002-2881-6760"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Babin, Danilo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9794,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9794,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9119,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11801","display_name":"Reservoir Engineering and Simulation Methods","score":0.9014,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.47062945},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.45933166}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77621186},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.75327295},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7226188},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5704479},{"id":"https://openalex.org/C191178318","wikidata":"https://www.wikidata.org/wiki/Q2256906","display_name":"Thresholding","level":3,"score":0.56906235},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.56502825},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.52801484},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5215792},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.47062945},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.45933166},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.1983881},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10294","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.10294","pdf_url":"http://arxiv.org/pdf/2206.10294","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://hdl.handle.net/1854/LU-8760359","pdf_url":"https://biblio.ugent.be/publication/8760359/file/8760381.pdf","source":{"id":"https://openalex.org/S4306400478","display_name":"Ghent University Academic Bibliography (Ghent University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I32597200","host_organization_name":"Ghent University","host_organization_lineage":["https://openalex.org/I32597200"],"host_organization_lineage_names":["Ghent University"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://biblio.ugent.be/publication/8760359/file/8760381","pdf_url":"https://biblio.ugent.be/publication/8760359/file/8760381","source":{"id":"https://openalex.org/S4306400478","display_name":"Ghent University Academic Bibliography (Ghent University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I32597200","host_organization_name":"Ghent University","host_organization_lineage":["https://openalex.org/I32597200"],"host_organization_lineage_names":["Ghent University"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.10294","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.10294","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4205800335","https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2386644571","https://openalex.org/W2372421320","https://openalex.org/W2371519352","https://openalex.org/W2185902295","https://openalex.org/W2103507220","https://openalex.org/W2055202857","https://openalex.org/W1986655823"],"abstract_inverted_index":{"Medical":[0],"image":[1,86,113],"segmentation":[2,40,71,83,97,126,148],"often":[3],"requires":[4],"segmenting":[5,18],"multiple":[6,108],"elliptical":[7],"objects":[8],"on":[9,52,73,84,107],"a":[10,33,60,69],"single":[11],"image.":[12],"This":[13],"includes,":[14],"among":[15],"other":[16,79],"tasks,":[17],"vessels":[19],"such":[20],"as":[21],"the":[22,38,53,74,78,81,89,95,102,111,153,156],"aorta":[23,56,125],"in":[24,45,150],"axial":[25],"CTA":[26],"slices.":[27],"In":[28,134],"this":[29,122],"paper,":[30],"we":[31,136],"present":[32],"general":[34],"approach":[35,51,140],"to":[36,100],"improving":[37],"semantic":[39],"performance":[41,127,149],"of":[42,55,62,88,94,110,155],"neural":[43,64,131],"networks":[44],"these":[46],"tasks":[47],"and":[48,77,105,143],"validate":[49],"our":[50,139],"task":[54],"segmentation.":[57],"We":[58,119],"use":[59],"cascade":[61],"two":[63],"networks,":[65],"where":[66],"one":[67],"performs":[68,80],"rough":[70,96],"based":[72],"U-Net":[75],"architecture":[76],"final":[82],"polar":[85,103],"transformations":[87,109],"input.":[90],"Connected":[91],"component":[92],"analysis":[93],"is":[98],"used":[99],"construct":[101],"transformations,":[104],"predictions":[106],"same":[112],"are":[114],"fused":[115],"using":[116],"hysteresis":[117],"thresholding.":[118],"show":[120,137],"that":[121,138],"method":[123],"improves":[124,141],"without":[128],"requiring":[129],"complex":[130],"network":[132],"architectures.":[133],"addition,":[135],"robustness":[142],"pixel-level":[144],"recall":[145],"while":[146],"achieving":[147],"line":[151],"with":[152],"state":[154],"art.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283332942","counts_by_year":[],"updated_date":"2024-12-06T13:03:09.185454","created_date":"2022-06-24"}