{"id":"https://openalex.org/W4283311214","doi":"https://doi.org/10.48550/arxiv.2206.09325","title":"EATFormer: Improving Vision Transformer Inspired by Evolutionary Algorithm","display_name":"EATFormer: Improving Vision Transformer Inspired by Evolutionary Algorithm","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283311214","doi":"https://doi.org/10.48550/arxiv.2206.09325"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.09325","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.09325","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021861529","display_name":"Jiangning Zhang","orcid":"https://orcid.org/0000-0001-8891-6766"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jiangning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029645676","display_name":"Xiangtai Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xiangtai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028731909","display_name":"Yabiao Wang","orcid":"https://orcid.org/0000-0002-6592-8411"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yabiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023834700","display_name":"Chengjie Wang","orcid":"https://orcid.org/0000-0003-4216-8090"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Chengjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100605566","display_name":"Yibo Yang","orcid":"https://orcid.org/0000-0002-4625-3367"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Yibo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100705504","display_name":"Yong Liu","orcid":"https://orcid.org/0000-0002-2510-9470"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Yong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5074103823","display_name":"Dacheng Tao","orcid":"https://orcid.org/0000-0001-7225-5449"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tao, Dacheng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.980094,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11992","display_name":"CCD and CMOS Imaging Sensors","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11992","display_name":"CCD and CMOS Imaging Sensors","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9847,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.70830816},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.59354854},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5766607},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.492068},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46356827},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2538245},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.20613614},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.09584704},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.09148389},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.09325","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.09325","pdf_url":"http://arxiv.org/pdf/2206.09325","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.09325","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.09325","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2073681303","https://openalex.org/W2051487156","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Motivated":[0],"by":[1,12,31,182,201,206],"biological":[2],"evolution,":[3],"this":[4],"paper":[5],"explains":[6],"the":[7,15,45,124],"rationality":[8],"of":[9,53,128],"Vision":[10],"Transformer":[11],"analogy":[13],"with":[14,88,158,191],"proven":[16],"practical":[17],"Evolutionary":[18],"Algorithm":[19],"(EA)":[20],"and":[21,63,67,76,98,112,120,126,143,151,169,180,186],"derives":[22],"that":[23,42,203],"both":[24],"have":[25],"consistent":[26],"mathematical":[27],"formulation.":[28],"Then":[29],"inspired":[30],"effective":[32],"EA":[33],"variants,":[34],"we":[35,81],"propose":[36],"a":[37,83,100],"novel":[38],"pyramid":[39],"EATFormer":[40],"backbone":[41,90],"only":[43,154],"contains":[44],"proposed":[46],"\\emph{EA-based":[47],"Transformer}":[48],"(EAT)":[49],"block,":[50],"which":[51],"consists":[52],"three":[54],"residual":[55],"parts,":[56],"\\ie,":[57],"\\emph{Multi-Scale":[58],"Region":[59],"Aggregation}":[60],"(MSRA),":[61],"\\emph{Global":[62],"Local":[64],"Interaction}":[65],"(GLI),":[66],"\\emph{Feed-Forward":[68],"Network}":[69],"(FFN)":[70],"modules,":[71],"to":[72,91,105],"model":[73,107],"multi-scale,":[74],"interactive,":[75],"individual":[77],"information":[78,94],"separately.":[79],"Moreover,":[80],"design":[82],"\\emph{Task-Related":[84],"Head}":[85],"(TRH)":[86],"docked":[87],"transformer":[89],"complete":[92],"final":[93],"fusion":[95],"more":[96],"flexibly":[97],"\\emph{improve}":[99],"\\emph{Modulated":[101],"Deformable":[102],"MSA}":[103],"(MD-MSA)":[104],"dynamically":[106],"irregular":[108],"locations.":[109],"Massive":[110],"quantitative":[111,113],"experiments":[114,122],"on":[115,156,173,199],"image":[116],"classification,":[117],"downstream":[118],"tasks,":[119],"explanatory":[121],"demonstrate":[123],"effectiveness":[125],"superiority":[127],"our":[129,136],"approach":[130],"over":[131],"State-Of-The-Art":[132],"(SOTA)":[133],"methods.":[134],"\\Eg,":[135],"Mobile":[137],"(1.8M),":[138],"Tiny":[139],"(6.1M),":[140],"Small":[141],"(24.3M),":[142],"Base":[144],"(49.0M)":[145],"models":[146],"achieve":[147,196],"69.4,":[148],"78.4,":[149],"83.1,":[150],"83.9":[152],"Top-1":[153],"trained":[155],"ImageNet-1K":[157],"naive":[159],"training":[160],"recipe;":[161],"EATFormer-Tiny/Small/Base":[162],"armed":[163],"Mask-R-CNN":[164],"obtain":[165],"45.4/47.4/49.0":[166],"box":[167,184],"AP":[168,172,185,189],"41.4/42.9/44.2":[170],"mask":[171,188],"COCO":[174],"detection,":[175],"surpassing":[176],"contemporary":[177],"MPViT-T,":[178],"Swin-T,":[179],"Swin-S":[181],"0.6/1.4/0.5":[183],"0.4/1.3/0.9":[187],"separately":[190],"less":[192],"FLOPs;":[193],"Our":[194],"EATFormer-Small/Base":[195],"47.3/49.3":[197],"mIoU":[198],"ADE20K":[200],"Upernet":[202],"exceeds":[204],"Swin-T/S":[205],"2.8/1.7.":[207],"Code":[208],"will":[209],"be":[210],"available":[211],"at":[212],"\\url{https://https://github.com/zhangzjn/EATFormer}.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283311214","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-16T16:51:18.658848","created_date":"2022-06-24"}