{"id":"https://openalex.org/W4283030912","doi":"https://doi.org/10.48550/arxiv.2206.07515","title":"A Deep Learning Network for the Classification of Intracardiac Electrograms in Atrial Tachycardia","display_name":"A Deep Learning Network for the Classification of Intracardiac Electrograms in Atrial Tachycardia","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4283030912","doi":"https://doi.org/10.48550/arxiv.2206.07515"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.07515","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.07515","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078999696","display_name":"Zerui Chen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Zerui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052875128","display_name":"Sonia Xhyn Teo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Teo, Sonia Xhyn","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045269888","display_name":"Andrie Ochtman","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ochtman, Andrie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065383551","display_name":"Shier Nee Saw","orcid":"https://orcid.org/0000-0002-2598-8452"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saw, Shier Nee","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089542879","display_name":"Nicholas Cheng","orcid":"https://orcid.org/0009-0007-9174-1099"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cheng, Nicholas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082910402","display_name":"Eric Lim","orcid":"https://orcid.org/0000-0002-9078-3226"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lim, Eric Tien Siang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002430125","display_name":"Murphy Lyu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lyu, Murphy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5032667101","display_name":"Hwee Kuan Lee","orcid":"https://orcid.org/0000-0003-1932-5377"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Hwee Kuan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11217","display_name":"Cardiac Arrhythmias and Treatments","score":0.9865,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77757096},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6931562},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6520558},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6294512},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.48811612},{"id":"https://openalex.org/C80093799","wikidata":"https://www.wikidata.org/wiki/Q366155","display_name":"Intracardiac injection","level":2,"score":0.45758784},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.44781965},{"id":"https://openalex.org/C2776331378","wikidata":"https://www.wikidata.org/wiki/Q56002","display_name":"Ventricular tachycardia","level":2,"score":0.4315669},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.41081008},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35326457},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C164705383","wikidata":"https://www.wikidata.org/wiki/Q10379","display_name":"Cardiology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.07515","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.07515","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.07515","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.42,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4206905980","https://openalex.org/W3180746331","https://openalex.org/W2400564179","https://openalex.org/W2392921965","https://openalex.org/W2377979023","https://openalex.org/W2361861616","https://openalex.org/W2350915185","https://openalex.org/W2263699433","https://openalex.org/W2218034408","https://openalex.org/W1964632492"],"abstract_inverted_index":{"A":[0],"key":[1],"technology":[2],"enabling":[3],"the":[4,41,45,60,78,86,92,98,136,147,156,176,185,198,214,218,222,227,235],"success":[5],"of":[6,25,63,77,91,125,141,153,173,191],"catheter":[7],"ablation":[8],"treatment":[9],"for":[10,49,59,88,135,155,175],"atrial":[11],"tachycardia":[12],"is":[13,33,101,202],"activation":[14,21,47],"mapping,":[15],"which":[16,74,106,169],"relies":[17],"on":[18,213],"manual":[19,89],"local":[20],"time":[22],"(LAT)":[23],"annotation":[24,80],"all":[26],"acquired":[27],"intracardiac":[28],"electrogram":[29],"(EGM)":[30],"signals.":[31,51,237],"This":[32,52],"a":[34,55,102,123,164,189],"time-consuming":[35],"and":[36,72,82,139,229],"error-prone":[37],"procedure,":[38],"due":[39],"to":[40,220,233],"difficulty":[42],"in":[43],"identifying":[44],"signal":[46],"peaks":[48],"fractionated":[50],"work":[53,181],"presents":[54],"Deep":[56,95],"Learning":[57,96],"approach":[58],"automated":[61],"classification":[62],"EGM":[64,120,186,206,236],"signals":[65,121,187,207,228],"into":[66],"three":[67],"different":[68],"types:":[69],"normal,":[70],"abnormal,":[71],"unclassified,":[73],"forms":[75],"part":[76],"LAT":[79],"pipeline,":[81],"contributes":[83],"towards":[84],"bypassing":[85],"need":[87],"annotations":[90],"LAT.":[93],"The":[94,210],"network,":[97],"CNN-LSTM":[99,148,211],"model,":[100,212],"hybrid":[103],"network":[104,110],"architecture":[105],"combines":[107],"convolutional":[108],"neural":[109],"(CNN)":[111],"layers":[112],"with":[113],"long":[114],"short-term":[115],"memory":[116],"(LSTM)":[117],"layers.":[118],"1452":[119],"from":[122],"total":[124],"9":[126],"patients":[127],"undergoing":[128],"clinically-indicated":[129],"3D":[130],"cardiac":[131],"mapping":[132],"were":[133],"used":[134],"training,":[137],"validation":[138],"testing":[140],"our":[142,145],"models.":[143],"From":[144],"findings,":[146],"model":[149,168,201],"achieved":[150],"an":[151,171],"accuracy":[152,172],"81%":[154],"balanced":[157,178],"dataset.":[158,179],"For":[159],"comparison,":[160],"we":[161],"separately":[162],"developed":[163],"rule-based":[165],"Decision":[166,199],"Trees":[167,200],"attained":[170],"67%":[174],"same":[177],"Our":[180],"elucidates":[182],"that":[183],"analysing":[184],"using":[188],"set":[190],"explicitly":[192],"specified":[193],"rules":[194],"as":[195,205],"proposed":[196],"by":[197],"not":[203],"suitable":[204],"are":[208],"complex.":[209],"other":[215],"hand,":[216],"has":[217],"ability":[219],"learn":[221],"complex,":[223],"intrinsic":[224],"features":[225,232],"within":[226],"identify":[230],"useful":[231],"differentiate":[234]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4283030912","counts_by_year":[],"updated_date":"2025-02-27T05:52:11.329369","created_date":"2022-06-18"}