{"id":"https://openalex.org/W4310265523","doi":"https://doi.org/10.48550/arxiv.2206.05260","title":"Balanced Product of Calibrated Experts for Long-Tailed Recognition","display_name":"Balanced Product of Calibrated Experts for Long-Tailed Recognition","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310265523","doi":"https://doi.org/10.48550/arxiv.2206.05260"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05260","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.05260","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006290863","display_name":"Emanuel Sanchez Aimar","orcid":"https://orcid.org/0000-0001-9874-737X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Aimar, Emanuel Sanchez","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083410485","display_name":"Arvi Jonnarth","orcid":"https://orcid.org/0000-0002-3434-2522"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jonnarth, Arvi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042087981","display_name":"Michael Felsberg","orcid":"https://orcid.org/0000-0002-6096-3648"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Felsberg, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5069485198","display_name":"Marco Kuhlmann","orcid":"https://orcid.org/0000-0002-2492-9872"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kuhlmann, Marco","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9897,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.52715605},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.5190404},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4471335}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67677474},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.66202766},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.5418776},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.52715605},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5259621},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.5190404},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45744205},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4471335},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.2165919},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21451154},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05260","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.05260","pdf_url":"http://arxiv.org/pdf/2206.05260","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.05260","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05260","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.4,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W43109613","https://openalex.org/W3162204513","https://openalex.org/W3083152911","https://openalex.org/W3022347918","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2120455979","https://openalex.org/W2080152487","https://openalex.org/W2048963458"],"abstract_inverted_index":{"Many":[0],"real-world":[1],"recognition":[2],"problems":[3],"are":[4],"characterized":[5],"by":[6,66,70,139],"long-tailed":[7,182],"label":[8],"distributions.":[9],"These":[10],"distributions":[11,128],"make":[12],"representation":[13],"learning":[14,54],"highly":[15],"challenging":[16],"due":[17],"to":[18,45,58,96,98,124,135],"limited":[19],"generalization":[20],"over":[21],"the":[22,26,31,38,41,75,78,91,131,142,148],"tail":[23,79],"classes.":[24,80],"If":[25],"test":[27],"distribution":[28,42],"differs":[29],"from":[30],"training":[32],"distribution,":[33],"e.g.":[34,69],"uniform":[35],"versus":[36],"long-tailed,":[37],"problem":[39],"of":[40,51,93,103,110],"shift":[43],"needs":[44],"be":[46],"addressed.":[47],"A":[48],"recent":[49],"line":[50],"work":[52],"proposes":[53],"multiple":[55],"diverse":[56],"experts":[57,73,111,132],"tackle":[59],"this":[60,82],"issue.":[61],"Ensemble":[62],"diversity":[63],"is":[64,144,190],"encouraged":[65],"various":[67],"techniques,":[68],"specializing":[71],"different":[72,113],"in":[74,133,165],"head":[76],"and":[77,89,129,173,186],"In":[81],"work,":[83],"we":[84,163],"take":[85],"an":[86],"analytical":[87],"approach":[88],"extend":[90],"notion":[92],"logit":[94],"adjustment":[95],"ensembles":[97],"form":[99],"a":[100,108],"Balanced":[101],"Product":[102],"Experts":[104],"(BalPoE).":[105],"BalPoE":[106],"combines":[107],"family":[109],"with":[112],"test-time":[114],"target":[115],"distributions,":[116],"generalizing":[117],"several":[118],"previous":[119],"approaches.":[120],"We":[121,169],"show":[122],"how":[123],"properly":[125],"define":[126],"these":[127],"combine":[130],"order":[134],"achieve":[136,164],"unbiased":[137],"predictions,":[138],"proving":[140],"that":[141,155],"ensemble":[143,158],"Fisher-consistent":[145],"for":[146],"minimizing":[147],"balanced":[149,157],"error.":[150],"Our":[151,188],"theoretical":[152],"analysis":[153],"shows":[154],"our":[156,174],"requires":[159],"calibrated":[160],"experts,":[161],"which":[162],"practice":[166],"using":[167],"mixup.":[168],"conduct":[170],"extensive":[171],"experiments":[172],"method":[175],"obtains":[176],"new":[177],"state-of-the-art":[178],"results":[179],"on":[180],"three":[181],"datasets:":[183],"CIFAR-100-LT,":[184],"ImageNet-LT,":[185],"iNaturalist-2018.":[187],"code":[189],"available":[191],"at":[192],"https://github.com/emasa/BalPoE-CalibratedLT.":[193]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310265523","counts_by_year":[],"updated_date":"2025-02-28T22:07:34.158548","created_date":"2022-11-30"}