{"id":"https://openalex.org/W4282813717","doi":"https://doi.org/10.48550/arxiv.2206.05225","title":"ClamNet: Using contrastive learning with variable depth Unets for medical image segmentation","display_name":"ClamNet: Using contrastive learning with variable depth Unets for medical image segmentation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4282813717","doi":"https://doi.org/10.48550/arxiv.2206.05225"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05225","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.05225","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079374610","display_name":"Samayan Bhattacharya","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bhattacharya, Samayan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044356376","display_name":"Sk Shahnawaz","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shahnawaz, Sk","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5077592877","display_name":"Avigyan Bhattacharya","orcid":"https://orcid.org/0000-0002-9567-1346"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bhattacharya, Avigyan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.694874,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.988,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7676948},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7486279},{"id":"https://openalex.org/C182365436","wikidata":"https://www.wikidata.org/wiki/Q50701","display_name":"Variable (mathematics)","level":2,"score":0.58438444},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.580601},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5669841},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.50191736},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.46510822},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4542828},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4461087},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.44476},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42683083},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3537275},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35317004},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.095989585},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05225","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.05225","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05225","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4323287533","https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W3024479225","https://openalex.org/W2951211570"],"abstract_inverted_index":{"Unets":[0],"have":[1],"become":[2],"the":[3,32,50,55,93,151,159,162,166,190],"standard":[4],"method":[5,168],"for":[6,52,59,95,103,129,153],"semantic":[7,130],"segmentation":[8,131],"of":[9,24,31,44,84,88,132,161,203],"medical":[10,133,136],"images,":[11],"along":[12],"with":[13,41],"fully":[14],"convolutional":[15],"networks":[16,40,73],"(FCN).":[17],"Unet++":[18,38,69,128],"was":[19],"introduced":[20],"as":[21],"a":[22,60,111,173],"variant":[23],"Unet,":[25],"in":[26,175,184,200],"order":[27],"to":[28,77,91,106,126],"solve":[29],"some":[30],"problems":[33],"facing":[34],"Unet":[35,63],"and":[36,64,146,165,177,189],"FCNs.":[37],"provided":[39],"an":[42],"ensemble":[43],"variable":[45],"depth":[46,58],"Unets,":[47],"hence":[48],"eliminating":[49],"need":[51,94,152],"professionals":[53],"estimating":[54],"best":[56],"suitable":[57],"task.":[61],"While":[62],"all":[65],"its":[66],"variants,":[67],"including":[68,141,182],"aimed":[70],"at":[71,110],"providing":[72],"that":[74],"were":[75],"able":[76],"train":[78,127],"well":[79],"without":[80,150],"requiring":[81],"large":[82],"quantities":[83],"annotated":[85,97],"data,":[86],"none":[87],"them":[89],"attempted":[90],"eliminate":[92],"pixel-wise":[96,154],"data":[98,102,116],"altogether.":[99],"Obtaining":[100],"such":[101,115],"each":[104],"disease":[105],"be":[107,194],"diagnosed":[108],"comes":[109],"high":[112],"cost.":[113],"Hence":[114],"is":[117,171],"scarce.":[118],"In":[119],"this":[120,185,204],"paper":[121,205],"we":[122,157,179],"use":[123],"contrastive":[124],"learning":[125],"images":[134,137],"using":[135],"from":[138,181],"various":[139],"sources":[140],"magnetic":[142],"resonance":[143],"imaging":[144],"(MRI)":[145],"computed":[147],"tomography":[148],"(CT),":[149],"annotations.":[155],"Here":[156],"describe":[158],"architecture":[160],"proposed":[163],"model":[164,192],"training":[167],"used.":[169],"This":[170],"still":[172],"work":[174],"progress":[176],"so":[178],"abstain":[180],"results":[183,188],"paper.":[186],"The":[187],"trained":[191],"would":[193],"made":[195],"available":[196],"upon":[197],"publication":[198],"or":[199],"subsequent":[201],"versions":[202],"on":[206],"arxiv.":[207]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4282813717","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-15T16:22:47.351506","created_date":"2022-06-14"}