{"id":"https://openalex.org/W4281623526","doi":"https://doi.org/10.48550/arxiv.2206.04282","title":"Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information","display_name":"Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281623526","doi":"https://doi.org/10.48550/arxiv.2206.04282"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.04282","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.04282","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090891199","display_name":"Yonathan Efroni","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Efroni, Yonathan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075069827","display_name":"Dylan J. Foster","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Foster, Dylan J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088218114","display_name":"Dipendra Misra","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Misra, Dipendra","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015082848","display_name":"Akshay Krishnamurthy","orcid":"https://orcid.org/0000-0002-5738-2383"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Krishnamurthy, Akshay","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5005003250","display_name":"John Langford","orcid":"https://orcid.org/0000-0002-9811-3550"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Langford, John","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9861,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.6889417},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6796965},{"id":"https://openalex.org/keywords/sample-complexity","display_name":"Sample complexity","score":0.59752876},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.5506784}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.88696766},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.6889417},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6796965},{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.6454958},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61126095},{"id":"https://openalex.org/C2778445095","wikidata":"https://www.wikidata.org/wiki/Q18354077","display_name":"Sample complexity","level":2,"score":0.59752876},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.5506784},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5415857},{"id":"https://openalex.org/C72434380","wikidata":"https://www.wikidata.org/wiki/Q230930","display_name":"State space","level":2,"score":0.5225688},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45527926},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.43668023},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.4114009},{"id":"https://openalex.org/C67203356","wikidata":"https://www.wikidata.org/wiki/Q1321905","display_name":"Reinforcement","level":2,"score":0.4106552},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24144486},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.11236176},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.081735104},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.04282","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.04282","pdf_url":"http://arxiv.org/pdf/2206.04282","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.04282","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.04282","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.78,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4225571923","https://openalex.org/W3168977894","https://openalex.org/W3096874164","https://openalex.org/W2937181779","https://openalex.org/W2386410636","https://openalex.org/W2357975469","https://openalex.org/W2341346307","https://openalex.org/W2145363145","https://openalex.org/W1985560493","https://openalex.org/W1626977535"],"abstract_inverted_index":{"In":[0],"real-world":[1],"reinforcement":[2,46,65,162],"learning":[3,36,47,163],"applications":[4],"the":[5,19,29,67,75,96,102,129,132,139,142,157,167],"learner's":[6,103],"observation":[7],"space":[8,77],"is":[9,99,164],"ubiquitously":[10],"high-dimensional":[11,25],"with":[12,124],"both":[13],"relevant":[14],"and":[15,37,89,135,172],"irrelevant":[16,92],"information":[17],"about":[18],"task":[20],"at":[21],"hand.":[22],"Learning":[23],"from":[24],"observations":[26],"has":[27],"been":[28],"subject":[30],"of":[31,101,131,138,141,169],"extensive":[32],"investigation":[33,179],"in":[34,45,53,73,107,128,166],"supervised":[35],"statistics":[38],"(e.g.,":[39],"via":[40],"sparsity),":[41],"but":[42,105],"analogous":[43],"issues":[44],"are":[48],"not":[49],"well":[50],"understood,":[51],"even":[52],"finite":[54],"state/action":[55],"(tabular)":[56],"domains.":[57],"We":[58,113],"introduce":[59],"a":[60,83,90,115,121,147,174],"new":[61,116],"problem":[62],"setting":[63],"for":[64,156,178],"learning,":[66],"Exogenous":[68],"Markov":[69],"Decision":[70],"Process":[71],"(ExoMDP),":[72],"which":[74,119],"state":[76],"admits":[78],"an":[79,108],"(unknown)":[80],"factorization":[81],"into":[82],"small":[84],"controllable":[85],"(or,":[86,93],"endogenous)":[87],"component":[88,98,134],"large":[91],"exogenous)":[94],"component;":[95],"exogenous":[97,143,170],"independent":[100,137],"actions,":[104],"evolves":[106],"arbitrary,":[109],"temporally":[110],"correlated":[111],"fashion.":[112],"provide":[114,173],"algorithm,":[117],"ExoRL,":[118],"learns":[120],"near-optimal":[122],"policy":[123],"sample":[125],"complexity":[126],"polynomial":[127],"size":[130,140],"endogenous":[133],"nearly":[136],"component,":[144],"thereby":[145],"offering":[146],"doubly-exponential":[148],"improvement":[149],"over":[150],"off-the-shelf":[151],"algorithms.":[152],"Our":[153],"results":[154],"highlight":[155],"first":[158],"time":[159],"that":[160],"sample-efficient":[161],"possible":[165],"presence":[168],"information,":[171],"simple,":[175],"user-friendly":[176],"benchmark":[177],"going":[180],"forward.":[181]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281623526","counts_by_year":[],"updated_date":"2025-03-06T02:59:07.191410","created_date":"2022-06-13"}