{"id":"https://openalex.org/W4281757372","doi":"https://doi.org/10.48550/arxiv.2206.04255","title":"ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning","display_name":"ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281757372","doi":"https://doi.org/10.48550/arxiv.2206.04255"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.04255","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.04255","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025236320","display_name":"Zhenwei Dai","orcid":"https://orcid.org/0000-0002-9238-9265"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dai, Zhenwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018583531","display_name":"Vasileios Ioannidis","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ioannidis, Vasileios","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016551629","display_name":"Soji Adeshina","orcid":"https://orcid.org/0000-0003-3945-3640"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Adeshina, Soji","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083071929","display_name":"Zak Jost","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jost, Zak","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035605036","display_name":"Christos Faloutsos","orcid":"https://orcid.org/0000-0003-2996-9790"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Faloutsos, Christos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5082384108","display_name":"George Karypis","orcid":"https://orcid.org/0000-0003-2753-1437"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karypis, George","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.51266897}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.765625},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.6751667},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5862147},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5549762},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5379676},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5348325},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.51266897},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5060021},{"id":"https://openalex.org/C77967617","wikidata":"https://www.wikidata.org/wiki/Q4677561","display_name":"Active learning (machine learning)","level":2,"score":0.4223106},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.13785776},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.04255","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.04255","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.04255","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.73}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2954163146","https://openalex.org/W2391251536","https://openalex.org/W2375008505","https://openalex.org/W2362198218","https://openalex.org/W2113077220","https://openalex.org/W2042102171","https://openalex.org/W2019521278","https://openalex.org/W1984922432","https://openalex.org/W1982750869","https://openalex.org/W1185300216"],"abstract_inverted_index":{"What":[0],"target":[1],"labels":[2],"are":[3],"most":[4],"effective":[5],"for":[6,64],"graph":[7],"neural":[8],"network":[9],"(GNN)":[10],"training?":[11],"In":[12,118],"some":[13],"applications":[14],"where":[15],"GNNs":[16,38],"excel-like":[17],"drug":[18],"design":[19],"or":[20],"fraud":[21],"detection,":[22],"labeling":[23],"new":[24],"instances":[25,53],"is":[26,90,124],"expensive.":[27],"We":[28],"develop":[29],"a":[30,46],"data-efficient":[31],"active":[32,41,103,150],"sampling":[33,47,104,157],"framework,":[34],"ScatterSample,":[35],"to":[36,51,101,108,126,161],"train":[37],"under":[39],"an":[40],"learning":[42,151],"setting.":[43],"ScatterSample":[44,88,123,144],"employs":[45],"module":[48],"termed":[49],"DiverseUncertainty":[50,73],"collect":[52],"with":[54],"large":[55],"uncertainty":[56,77,112,131],"from":[57,84],"different":[58],"regions":[59],"of":[60,69],"the":[61,70,75,81,111,116,129,133,147,156,165],"sample":[62,135],"space":[63],"labeling.":[65],"To":[66],"ensure":[67],"diversification":[68],"selected":[71],"nodes,":[72],"clusters":[74],"high":[76],"nodes":[78,83],"and":[79,113],"selects":[80],"representative":[82],"each":[85],"cluster.":[86],"Our":[87,137],"algorithm":[89],"further":[91],"supported":[92],"by":[93,159],"rigorous":[94],"theoretical":[95],"analysis":[96],"demonstrating":[97],"its":[98],"advantage":[99],"compared":[100],"standard":[102],"methods":[105],"that":[106,122,143],"aim":[107],"simply":[109],"maximize":[110],"not":[114],"diversify":[115],"samples.":[117],"particular,":[119],"we":[120],"show":[121,142],"able":[125],"efficiently":[127],"reduce":[128],"model":[130],"over":[132],"whole":[134],"space.":[136],"experiments":[138],"on":[139],"five":[140],"datasets":[141],"significantly":[145],"outperforms":[146],"other":[148],"GNN":[149],"baselines,":[152],"specifically":[153],"it":[154],"reduces":[155],"cost":[158],"up":[160],"50%":[162],"while":[163],"achieving":[164],"same":[166],"test":[167],"accuracy.":[168]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281757372","counts_by_year":[],"updated_date":"2025-03-02T03:12:53.759813","created_date":"2022-06-13"}