{"id":"https://openalex.org/W4284710558","doi":"https://doi.org/10.48550/arxiv.2206.03398","title":"Towards a General Purpose CNN for Long Range Dependencies in $N$D","display_name":"Towards a General Purpose CNN for Long Range Dependencies in $N$D","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4284710558","doi":"https://doi.org/10.48550/arxiv.2206.03398"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.03398","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.03398","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084474296","display_name":"David W. Romero","orcid":"https://orcid.org/0000-0001-5446-1070"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Romero, David W.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009973807","display_name":"David M. Knigge","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Knigge, David M.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025386668","display_name":"Albert Gu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gu, Albert","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000647841","display_name":"Erik J. Bekkers","orcid":"https://orcid.org/0000-0003-4418-2160"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bekkers, Erik J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002625178","display_name":"Efstratios Gavves","orcid":"https://orcid.org/0000-0001-8947-1332"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gavves, Efstratios","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004385039","display_name":"Jakub M. Tomczak","orcid":"https://orcid.org/0000-0001-8634-694X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tomczak, Jakub M.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5044217809","display_name":"Mark Hoogendoorn","orcid":"https://orcid.org/0000-0003-3356-3574"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hoogendoorn, Mark","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.945579,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":82,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/upsampling","display_name":"Upsampling","score":0.8261593},{"id":"https://openalex.org/keywords/generality","display_name":"Generality","score":0.65215814}],"concepts":[{"id":"https://openalex.org/C110384440","wikidata":"https://www.wikidata.org/wiki/Q1143270","display_name":"Upsampling","level":3,"score":0.8261593},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8227385},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.81963575},{"id":"https://openalex.org/C2780767217","wikidata":"https://www.wikidata.org/wiki/Q5532421","display_name":"Generality","level":2,"score":0.65215814},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5931983},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.57626927},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.5738232},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5494121},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5344628},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4559664},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35523322},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3247482},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.19831511},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C542102704","wikidata":"https://www.wikidata.org/wiki/Q183257","display_name":"Psychotherapist","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.03398","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.03398","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.03398","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.42}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2951211570","https://openalex.org/W2045049461","https://openalex.org/W1978893398"],"abstract_inverted_index":{"The":[0],"use":[1],"of":[2,16,88,126,138],"Convolutional":[3,67],"Neural":[4,68],"Networks":[5],"(CNNs)":[6],"is":[7],"widespread":[8],"in":[9,22,40,118],"Deep":[10],"Learning":[11],"due":[12],"to":[13,37,42,134],"a":[14,71,135],"range":[15,102],"desirable":[17],"model":[18,100],"properties":[19],"which":[20],"result":[21],"an":[23],"efficient":[24],"and":[25,51,92,107,114,143,151],"effective":[26],"machine":[27],"learning":[28],"framework.":[29],"However,":[30],"performant":[31],"CNN":[32,62,73,120],"architectures":[33,63],"must":[34],"be":[35,82],"tailored":[36],"specific":[38],"tasks":[39,85,139,159],"order":[41],"incorporate":[43],"considerations":[44],"such":[45],"as":[46],"the":[47,58,109,124,131,154],"input":[48],"length,":[49],"resolution,":[50,90],"dimentionality.":[52],"In":[53],"this":[54],"work,":[55],"we":[56],"overcome":[57],"need":[59,110],"for":[60,84,111],"problem-specific":[61],"with":[64,76],"our":[65,127],"Continuous":[66,97],"Network":[69],"(CCNN):":[70],"single":[72],"architecture":[74],"equipped":[75],"continuous":[77],"convolutional":[78,98],"kernels":[79,99],"that":[80],"can":[81],"used":[83],"on":[86,140],"data":[87,145],"arbitrary":[89],"dimensionality":[91],"length":[93],"without":[94],"structural":[95],"changes.":[96],"long":[101],"dependencies":[103],"at":[104],"every":[105],"layer,":[106],"remove":[108],"downsampling":[112],"layers":[113],"task-dependent":[115],"depths":[116],"needed":[117],"current":[119,155],"architectures.":[121],"We":[122],"show":[123],"generality":[125],"approach":[128],"by":[129],"applying":[130],"same":[132],"CCNN":[133,148],"wide":[136],"set":[137],"sequential":[141],"(1$\\mathrm{D}$)":[142],"visual":[144],"(2$\\mathrm{D}$).":[146],"Our":[147],"performs":[149],"competitively":[150],"often":[152],"outperforms":[153],"state-of-the-art":[156],"across":[157],"all":[158],"considered.":[160]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4284710558","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-03-16T09:48:59.938917","created_date":"2022-07-08"}