{"id":"https://openalex.org/W4281922990","doi":"https://doi.org/10.48550/arxiv.2206.03382","title":"Tutel: Adaptive Mixture-of-Experts at Scale","display_name":"Tutel: Adaptive Mixture-of-Experts at Scale","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281922990","doi":"https://doi.org/10.48550/arxiv.2206.03382"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.03382","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.03382","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5052716351","display_name":"Chang Ho Hwang","orcid":"https://orcid.org/0000-0003-0444-3602"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hwang, Changho","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076912232","display_name":"Wei Cui","orcid":"https://orcid.org/0000-0003-1755-7887"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cui, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112754917","display_name":"Yifan Xiong","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiong, Yifan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100748956","display_name":"Ziyue Yang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Ziyue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100349457","display_name":"Ze Liu","orcid":"https://orcid.org/0000-0002-5121-7547"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Ze","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101976576","display_name":"Han Hu","orcid":"https://orcid.org/0000-0001-5104-6146"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100384118","display_name":"Zilong Wang","orcid":"https://orcid.org/0009-0000-4026-0104"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Zilong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109577083","display_name":"Rafael Salas","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salas, Rafael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070257107","display_name":"Jithin Jose","orcid":"https://orcid.org/0000-0002-8389-5596"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jose, Jithin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110482527","display_name":"Prabhat Ram","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ram, Prabhat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078983782","display_name":"Joe Chau","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chau, Joe","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105889945","display_name":"Peng Cheng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cheng, Peng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100346607","display_name":"Fan Yang","orcid":"https://orcid.org/0000-0002-1157-8719"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Fan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100438310","display_name":"Mao Yang","orcid":"https://orcid.org/0009-0009-6455-3898"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Mao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100735357","display_name":"Yongqiang Xiong","orcid":"https://orcid.org/0000-0003-4175-0097"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiong, Yongqiang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":19,"citation_normalized_percentile":{"value":0.941608,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/speedup","display_name":"Speedup","score":0.85590774},{"id":"https://openalex.org/keywords/flex","display_name":"FLEX","score":0.46232298}],"concepts":[{"id":"https://openalex.org/C68339613","wikidata":"https://www.wikidata.org/wiki/Q1549489","display_name":"Speedup","level":2,"score":0.85590774},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8544351},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.6874651},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.5982368},{"id":"https://openalex.org/C2776252893","wikidata":"https://www.wikidata.org/wiki/Q1364836","display_name":"FLEX","level":2,"score":0.46232298},{"id":"https://openalex.org/C2778476105","wikidata":"https://www.wikidata.org/wiki/Q628539","display_name":"Workload","level":2,"score":0.44770294},{"id":"https://openalex.org/C48145219","wikidata":"https://www.wikidata.org/wiki/Q1335365","display_name":"Security token","level":2,"score":0.42796302},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.42293566},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.13063401},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.110860854},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.03382","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.03382","pdf_url":"http://arxiv.org/pdf/2206.03382","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.03382","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.03382","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4253292776","https://openalex.org/W4250698707","https://openalex.org/W4247748223","https://openalex.org/W4244545186","https://openalex.org/W3138386522","https://openalex.org/W2499279132","https://openalex.org/W2483231410","https://openalex.org/W1974690493","https://openalex.org/W183173419","https://openalex.org/W1008394927"],"abstract_inverted_index":{"Sparsely-gated":[0],"mixture-of-experts":[1],"(MoE)":[2],"has":[3],"been":[4],"widely":[5],"adopted":[6],"to":[7,12,35,59,72,212],"scale":[8,158],"deep":[9],"learning":[10],"models":[11],"trillion-plus":[13],"parameters":[14,103],"with":[15,88],"fixed":[16],"computational":[17],"cost.":[18],"The":[19],"algorithmic":[20],"performance":[21],"of":[22,48,164,253],"MoE":[23,87,101,145,167],"relies":[24],"on":[25,137],"its":[26],"token":[27,34,42],"routing":[28,43],"mechanism":[29],"that":[30,183],"forwards":[31],"each":[32],"input":[33,105],"the":[36,46,73,177,226,246,251],"right":[37],"sub-models":[38],"or":[39,115,122],"experts.":[40],"While":[41],"dynamically":[44,89],"determines":[45],"amount":[47],"expert":[49],"workload":[50],"at":[51,131,156],"runtime,":[52],"existing":[53],"systems":[54],"suffer":[55],"inefficient":[56],"computation":[57],"due":[58],"their":[60],"static":[61,64],"execution,":[62],"namely":[63],"parallelism":[65,91,114],"and":[66,84,92,104,161,171,186,214,219,235,260],"pipelining,":[67],"which":[68,107],"does":[69],"not":[70],"adapt":[71],"dynamic":[74],"workload.":[75],"We":[76],"present":[77],"Flex,":[78],"a":[79,165,189,200],"highly":[80],"scalable":[81],"stack":[82],"design":[83],"implementation":[85],"for":[86,99,255],"adaptive":[90,128],"pipelining.":[93],"Flex":[94,141,151,184,207,254],"designs":[95],"an":[96],"identical":[97],"layout":[98],"distributing":[100],"model":[102,192,228,258],"data,":[106],"can":[108],"be":[109],"leveraged":[110],"by":[111],"all":[112,149],"possible":[113],"pipelining":[116],"methods":[117],"without":[118],"any":[119,157],"mathematical":[120],"inequivalence":[121],"tensor":[123],"migration":[124],"overhead.":[125],"This":[126],"enables":[127],"parallelism/pipelining":[129],"optimization":[130],"zero":[132],"cost":[133],"during":[134],"runtime.":[135],"Based":[136],"this":[138],"key":[139],"design,":[140],"also":[142],"implements":[143],"various":[144],"acceleration":[146],"techniques.":[147],"Aggregating":[148],"techniques,":[150],"finally":[152],"delivers":[153],"huge":[154],"speedup":[155,163,216],"--":[159],"4.96x":[160],"5.75x":[162],"single":[166],"layer":[168],"over":[169,176,221],"16":[170],"2,048":[172],"A100":[173],"GPUs,":[174],"respectively,":[175],"previous":[178],"state-of-the-art.":[179],"Our":[180],"evaluation":[181],"shows":[182],"efficiently":[185],"effectively":[187],"runs":[188],"real-world":[190,257],"MoE-based":[191],"named":[193],"SwinV2-MoE,":[194,209],"built":[195],"upon":[196],"Swin":[197],"Transformer":[198],"V2,":[199],"state-of-the-art":[201],"computer":[202,237],"vision":[203,238],"architecture.":[204],"On":[205,224],"efficiency,":[206],"accelerates":[208],"achieving":[210],"up":[211],"1.55x":[213],"2.11x":[215],"in":[217,232],"training":[218,259],"inference":[220],"Fairseq,":[222],"respectively.":[223],"effectiveness,":[225],"SwinV2-MoE":[227],"achieves":[229],"superior":[230],"accuracy":[231],"both":[233],"pre-training":[234],"down-stream":[236],"tasks":[239],"such":[240],"as":[241],"COCO":[242],"object":[243],"detection":[244],"than":[245],"counterpart":[247],"dense":[248],"model,":[249],"indicating":[250],"readiness":[252],"end-to-end":[256],"inference.":[261]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281922990","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":10}],"updated_date":"2025-05-03T10:10:50.389956","created_date":"2022-06-13"}