{"id":"https://openalex.org/W4281692271","doi":"https://doi.org/10.48550/arxiv.2206.00344","title":"Self-Supervised Learning as a Means To Reduce the Need for Labeled Data in Medical Image Analysis","display_name":"Self-Supervised Learning as a Means To Reduce the Need for Labeled Data in Medical Image Analysis","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281692271","doi":"https://doi.org/10.48550/arxiv.2206.00344"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.00344","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2206.00344","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027152185","display_name":"Marin Ben\u010devi\u0107","orcid":"https://orcid.org/0000-0003-4294-0781"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ben\u010devi\u0107, Marin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055227189","display_name":"Marija Habijan","orcid":"https://orcid.org/0000-0002-3754-498X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Habijan, Marija","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083837803","display_name":"Irena Gali\u0107","orcid":"https://orcid.org/0000-0002-0211-4568"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gali\u0107, Irena","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5031078128","display_name":"Aleksandra Pi\u017eurica","orcid":"https://orcid.org/0000-0002-9322-4999"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pizurica, Aleksandra","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.696386,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bounding-overwatch","display_name":"Bounding overwatch","score":0.692669},{"id":"https://openalex.org/keywords/minimum-bounding-box","display_name":"Minimum bounding box","score":0.5986264},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.54461783},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.5023465}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72230923},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7141215},{"id":"https://openalex.org/C63584917","wikidata":"https://www.wikidata.org/wiki/Q333286","display_name":"Bounding overwatch","level":2,"score":0.692669},{"id":"https://openalex.org/C147037132","wikidata":"https://www.wikidata.org/wiki/Q6865426","display_name":"Minimum bounding box","level":3,"score":0.5986264},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.547095},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.54461783},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.521777},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.516831},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.51516855},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.5023465},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.48608544},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4847176},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.00344","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2206.00344","pdf_url":"http://arxiv.org/pdf/2206.00344","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://hdl.handle.net/1854/LU-8760360","pdf_url":"https://biblio.ugent.be/publication/8760360/file/8760382.pdf","source":{"id":"https://openalex.org/S4306400478","display_name":"Ghent University Academic Bibliography (Ghent University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I32597200","host_organization_name":"Ghent University","host_organization_lineage":["https://openalex.org/I32597200"],"host_organization_lineage_names":["Ghent University"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://biblio.ugent.be/publication/8760360/file/8760382","pdf_url":"https://biblio.ugent.be/publication/8760360/file/8760382","source":{"id":"https://openalex.org/S4306400478","display_name":"Ghent University Academic Bibliography (Ghent University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I32597200","host_organization_name":"Ghent University","host_organization_lineage":["https://openalex.org/I32597200"],"host_organization_lineage_names":["Ghent University"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2206.00344","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.00344","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390524233","https://openalex.org/W4287027631","https://openalex.org/W4237171675","https://openalex.org/W3209723314","https://openalex.org/W3205398323","https://openalex.org/W3192357901","https://openalex.org/W3036286480","https://openalex.org/W2952736415","https://openalex.org/W2883297582","https://openalex.org/W2387360586"],"abstract_inverted_index":{"One":[0],"of":[1,12,36,58,70,79,90,110,119,135,156],"the":[2,10,38,80,88,91,120,132],"largest":[3],"problems":[4],"in":[5,43,108],"medical":[6,16,44],"image":[7,45],"processing":[8],"is":[9,97,128],"lack":[11],"annotated":[13],"data.":[14,122],"Labeling":[15],"images":[17,61],"often":[18],"requires":[19],"highly":[20],"trained":[21],"experts":[22],"and":[23,84,114,145],"can":[24,148],"be":[25,149],"a":[26,34,56,77,104,136,141,153],"time-consuming":[27],"process.":[28],"In":[29],"this":[30,146],"paper,":[31],"we":[32],"evaluate":[33],"method":[35],"reducing":[37],"need":[39],"for":[40,66,159],"labeled":[41,121],"data":[42,158],"object":[46],"detection":[47],"by":[48,139],"using":[49],"self-supervised":[50,142],"neural":[51],"network":[52],"pretraining.":[53,160],"We":[54,93,123],"use":[55],"dataset":[57,81],"chest":[59],"X-ray":[60],"with":[62,116,151],"bounding":[63],"box":[64],"labels":[65,83],"13":[67],"different":[68],"classes":[69],"anomalies.":[71],"The":[72],"networks":[73],"are":[74],"pretrained":[75],"on":[76,87],"percentage":[78],"without":[82],"then":[85],"fine-tuned":[86],"rest":[89],"dataset.":[92],"show":[94,125],"that":[95,126],"it":[96,127],"possible":[98,129],"to":[99,103,130],"achieve":[100],"similar":[101],"performance":[102,134],"fully":[105],"supervised":[106],"model":[107,138],"terms":[109],"mean":[111],"average":[112],"precision":[113],"accuracy":[115],"only":[117],"60\\%":[118],"also":[124],"increase":[131],"maximum":[133],"fully-supervised":[137],"adding":[140],"pretraining":[143],"step,":[144],"effect":[147],"observed":[150],"even":[152],"small":[154],"amount":[155],"unlabeled":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281692271","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-22T04:40:48.544564","created_date":"2022-06-13"}