{"id":"https://openalex.org/W4281732886","doi":"https://doi.org/10.48550/arxiv.2205.12528","title":"LOPS: Learning Order Inspired Pseudo-Label Selection for Weakly Supervised Text Classification","display_name":"LOPS: Learning Order Inspired Pseudo-Label Selection for Weakly Supervised Text Classification","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281732886","doi":"https://doi.org/10.48550/arxiv.2205.12528"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.12528","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.12528","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032931351","display_name":"Dheeraj Mekala","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mekala, Dheeraj","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027505884","display_name":"Chengyu Dong","orcid":"https://orcid.org/0000-0001-6594-1432"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dong, Chengyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5039500313","display_name":"Jingbo Shang","orcid":"https://orcid.org/0000-0002-7249-4404"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shang, Jingbo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.826057,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9463,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/softmax-function","display_name":"Softmax function","score":0.6700911},{"id":"https://openalex.org/keywords/memorization","display_name":"Memorization","score":0.5036418},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.41871548}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73712766},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.72924024},{"id":"https://openalex.org/C188441871","wikidata":"https://www.wikidata.org/wiki/Q7554146","display_name":"Softmax function","level":3,"score":0.6700911},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.65779865},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5773946},{"id":"https://openalex.org/C30038468","wikidata":"https://www.wikidata.org/wiki/Q4354775","display_name":"Memorization","level":2,"score":0.5036418},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.42979464},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.41871548},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37172914},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14577845},{"id":"https://openalex.org/C145420912","wikidata":"https://www.wikidata.org/wiki/Q853077","display_name":"Mathematics education","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.12528","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2205.12528","pdf_url":"http://arxiv.org/pdf/2205.12528","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.12528","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.12528","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4300326282","https://openalex.org/W4287591324","https://openalex.org/W4226420367","https://openalex.org/W3170224572","https://openalex.org/W3120400911","https://openalex.org/W3107204728","https://openalex.org/W2980176872","https://openalex.org/W2947839263","https://openalex.org/W2810018382","https://openalex.org/W2742395793"],"abstract_inverted_index":{"Weakly":[0],"supervised":[1],"text":[2,177],"classification":[3,178],"methods":[4],"typically":[5],"train":[6],"a":[7,39,122,168],"deep":[8,96],"neural":[9,60,97],"classifier":[10,61],"based":[11,52],"on":[12,53,91,185],"pseudo-labels.":[13,65],"The":[14],"quality":[15],"of":[16,95,132,145,150,174],"pseudo-labels":[17],"is":[18,48],"crucial":[19],"to":[20,29,49,63,80,155,172],"final":[21],"performance":[22,43],"but":[23],"they":[24],"are":[25,75,160],"inevitably":[26],"noisy":[27,114],"due":[28,79],"their":[30,64],"heuristic":[31],"nature,":[32],"so":[33],"selecting":[34],"the":[35,54,59,81,92,139,143,157],"correct":[36],"ones":[37],"has":[38],"huge":[40],"potential":[41],"for":[42],"boost.":[44],"One":[45],"straightforward":[46],"solution":[47],"select":[50,156],"samples":[51,106,133,158],"softmax":[55],"probability":[56,144],"scores":[57],"in":[58,148,182],"corresponding":[62],"However,":[66],"we":[67,120],"show":[68],"through":[69],"our":[70],"experiments":[71,184],"that":[72,100,128,138,159],"such":[73],"solutions":[74],"ineffective":[76],"and":[77,110,152],"unstable":[78],"erroneously":[82],"high-confidence":[83],"predictions":[84],"from":[85],"poorly":[86],"calibrated":[87],"models.":[88],"Recent":[89],"studies":[90],"memorization":[93],"effects":[94],"models":[98,102],"suggest":[99],"these":[101],"first":[103],"memorize":[104],"training":[105],"with":[107,113],"clean":[108],"labels":[109],"then":[111],"those":[112],"labels.":[115],"Inspired":[116],"by":[117],"this":[118],"observation,":[119],"propose":[121,154],"novel":[123],"pseudo-label":[124],"selection":[125],"method":[126],"LOPS":[127,163],"takes":[129],"learning":[130,140],"order":[131,141],"into":[134],"consideration.":[135],"We":[136],"hypothesize":[137],"reflects":[142],"wrong":[146],"annotation":[147],"terms":[149],"ranking,":[151],"therefore,":[153],"learnt":[161],"earlier.":[162],"can":[164],"be":[165],"viewed":[166],"as":[167,180],"strong":[169],"performance-boost":[170],"plug-in":[171],"most":[173],"existing":[175],"weakly-supervised":[176],"methods,":[179],"confirmed":[181],"extensive":[183],"four":[186],"real-world":[187],"datasets.":[188]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281732886","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-04T15:37:07.523711","created_date":"2022-06-13"}