{"id":"https://openalex.org/W4281553510","doi":"https://doi.org/10.48550/arxiv.2205.11519","title":"FedSA: Accelerating Intrusion Detection in Collaborative Environments with Federated Simulated Annealing","display_name":"FedSA: Accelerating Intrusion Detection in Collaborative Environments with Federated Simulated Annealing","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281553510","doi":"https://doi.org/10.48550/arxiv.2205.11519"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.11519","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.11519","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035841234","display_name":"Helio N. Cunha Neto","orcid":"https://orcid.org/0000-0001-5072-8102"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Neto, Helio N. Cunha","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059738292","display_name":"Ivana Duspari\u0107","orcid":"https://orcid.org/0000-0003-0621-5400"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dusparic, Ivana","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076412136","display_name":"Diogo M. F. Mattos","orcid":"https://orcid.org/0000-0002-1279-7366"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mattos, Diogo M. F.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5063091818","display_name":"Nat\u00e1lia C. Fernandes","orcid":"https://orcid.org/0000-0001-9481-6374"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fernandes, Natalia C.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11598","display_name":"Internet Traffic Analysis and Secure E-voting","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12262","display_name":"Hate Speech and Cyberbullying Detection","score":0.9716,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.74985254},{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.6985494}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8552481},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.74985254},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.6985494},{"id":"https://openalex.org/C35525427","wikidata":"https://www.wikidata.org/wiki/Q745881","display_name":"Intrusion detection system","level":2,"score":0.6442472},{"id":"https://openalex.org/C126980161","wikidata":"https://www.wikidata.org/wiki/Q863783","display_name":"Simulated annealing","level":2,"score":0.6324604},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.5231042},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48512754},{"id":"https://openalex.org/C138020889","wikidata":"https://www.wikidata.org/wiki/Q2349659","display_name":"Collaborative learning","level":2,"score":0.43633094},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40161377},{"id":"https://openalex.org/C56739046","wikidata":"https://www.wikidata.org/wiki/Q192060","display_name":"Knowledge management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.11519","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.11519","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.11519","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/17","score":0.48,"display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390421286","https://openalex.org/W4389724018","https://openalex.org/W4360995913","https://openalex.org/W4318719684","https://openalex.org/W4318559728","https://openalex.org/W4312193868","https://openalex.org/W4280563792","https://openalex.org/W3183136280","https://openalex.org/W2775233965","https://openalex.org/W2140186469"],"abstract_inverted_index":{"Fast":[0],"identification":[1],"of":[2,86],"new":[3],"network":[4,11,21],"attack":[5,17,156],"patterns":[6],"is":[7,22],"crucial":[8],"for":[9,35,88],"improving":[10],"security.":[12],"Nevertheless,":[13],"identifying":[14],"an":[15,36],"ongoing":[16],"in":[18,92,135,155],"a":[19,23,30,46,84],"heterogeneous":[20],"non-trivial":[24],"task.":[25],"Federated":[26,74],"learning":[27,52,116],"emerges":[28],"as":[29],"solution":[31],"to":[32,67,79,99,145,150],"collaborative":[33],"training":[34],"Intrusion":[37],"Detection":[38],"System":[39],"(IDS).":[40],"The":[41,104,125,141],"federated":[42,56,68,93],"learning-based":[43],"IDS":[44,123],"trains":[45],"global":[47,101,132],"model":[48,102,133],"using":[49],"local":[50,60,119],"machine":[51],"models":[53],"provided":[54],"by":[55],"participants":[57,87],"without":[58],"sharing":[59],"data.":[61],"However,":[62],"optimization":[63],"challenges":[64],"are":[65],"intrinsic":[66],"learning.":[69,94],"This":[70],"paper":[71],"proposes":[72],"the":[73,81,100,130,159],"Simulated":[75],"Annealing":[76],"(FedSA)":[77],"metaheuristic":[78],"select":[80],"hyperparameters":[82,97],"and":[83,109],"subset":[85],"each":[89],"aggregation":[90,107,148,161],"round":[91],"FedSA":[95,114,131],"optimizes":[96],"linked":[98],"convergence.":[103,112],"proposal":[105,126,142],"reduces":[106],"rounds":[108,149],"speeds":[110],"up":[111,144],"Thus,":[113],"accelerates":[115],"extraction":[117],"from":[118],"models,":[120],"requiring":[121],"fewer":[122,147],"updates.":[124],"assessment":[127],"shows":[128],"that":[129],"converges":[134],"less":[136],"than":[137,158],"ten":[138],"communication":[139],"rounds.":[140],"requires":[143],"50%":[146],"achieve":[151],"approximately":[152],"97%":[153],"accuracy":[154],"detection":[157],"conventional":[160],"approach.":[162]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281553510","counts_by_year":[],"updated_date":"2024-12-07T06:00:53.751600","created_date":"2022-05-27"}