{"id":"https://openalex.org/W4308288693","doi":"https://doi.org/10.48550/arxiv.2205.10682","title":"A Novel Markov Model for Near-Term Railway Delay Prediction","display_name":"A Novel Markov Model for Near-Term Railway Delay Prediction","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4308288693","doi":"https://doi.org/10.48550/arxiv.2205.10682"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.10682","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.10682","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100380910","display_name":"Jin Xu","orcid":"https://orcid.org/0000-0002-9168-684X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Jin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100601725","display_name":"Weiqi Wang","orcid":"https://orcid.org/0000-0002-0441-4388"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Weiqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014063401","display_name":"Zheming Gao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Zheming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036933266","display_name":"Haochen Luo","orcid":"https://orcid.org/0000-0002-8846-527X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Haochen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100618198","display_name":"Qian Wu","orcid":"https://orcid.org/0000-0003-4344-2864"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Qian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10842","display_name":"Railway Engineering and Dynamics","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10842","display_name":"Railway Engineering and Dynamics","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11568","display_name":"Railway Systems and Energy Efficiency","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9026,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.7956953},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.5355427}],"concepts":[{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.816586},{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.7956953},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72142804},{"id":"https://openalex.org/C163836022","wikidata":"https://www.wikidata.org/wiki/Q6771326","display_name":"Markov model","level":3,"score":0.5418625},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.5355427},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.49828005},{"id":"https://openalex.org/C190839683","wikidata":"https://www.wikidata.org/wiki/Q2448197","display_name":"Train","level":2,"score":0.48197025},{"id":"https://openalex.org/C54907487","wikidata":"https://www.wikidata.org/wiki/Q7915688","display_name":"Variable-order Markov model","level":4,"score":0.4472955},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.43829232},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.42836416},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4254355},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.373151},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36667478},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27881485},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18872944},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.11329579},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.10682","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2205.10682","pdf_url":"http://arxiv.org/pdf/2205.10682","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.10682","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.10682","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3126873283","https://openalex.org/W3022014775","https://openalex.org/W2540690809","https://openalex.org/W2393621008","https://openalex.org/W2382132287","https://openalex.org/W2353273130","https://openalex.org/W2130519334","https://openalex.org/W2129435535","https://openalex.org/W2100055350","https://openalex.org/W1985664346"],"abstract_inverted_index":{"Predicting":[0],"the":[1,41,66,69,73],"near-future":[2],"delay":[3,42,55],"with":[4,65,122],"accuracy":[5],"for":[6,10,24],"trains":[7],"is":[8,142],"momentous":[9],"railway":[11],"operations":[12],"and":[13,127],"passengers'":[14],"traveling":[15],"experience.":[16],"This":[17],"work":[18],"aims":[19],"to":[20,38,113,124],"design":[21],"prediction":[22,56,103,128],"models":[23,121],"train":[25],"delays":[26],"based":[27,58],"on":[28,59,85],"Netherlands":[29],"Railway":[30],"data.":[31],"We":[32,51],"first":[33],"develop":[34],"a":[35,47,54,78,137],"chi-square":[36],"test":[37],"show":[39,93],"that":[40,83,94],"evolution":[43],"over":[44],"stations":[45],"follows":[46],"first-order":[48],"Markov":[49,61,74,106],"chain.":[50],"then":[52],"propose":[53,77,110],"model":[57,108,133],"non-homogeneous":[60],"chains.":[62],"To":[63],"deal":[64],"sparsity":[67],"of":[68,72,144],"transition":[70],"matrices":[71],"chains,":[75],"we":[76,109],"novel":[79],"matrix":[80],"recovery":[81,96],"approach":[82,97],"relies":[84],"Gaussian":[86],"kernel":[87],"density":[88],"estimation.":[89],"Our":[90],"numerical":[91],"tests":[92],"this":[95],"outperforms":[98],"other":[99,117],"heuristic":[100],"approaches":[101],"in":[102],"accuracy.":[104,129],"The":[105],"chain":[107],"also":[111],"shows":[112],"be":[114],"better":[115],"than":[116],"widely-used":[118],"time":[119],"series":[120],"respect":[123],"both":[125],"interpretability":[126],"Moreover,":[130],"our":[131],"proposed":[132],"does":[134],"not":[135],"require":[136],"complicated":[138],"training":[139],"process,":[140],"which":[141],"capable":[143],"handling":[145],"large-scale":[146],"forecasting":[147],"problems.":[148]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308288693","counts_by_year":[],"updated_date":"2025-03-01T02:06:14.541217","created_date":"2022-11-10"}