{"id":"https://openalex.org/W4281395478","doi":"https://doi.org/10.48550/arxiv.2205.09842","title":"Generation of Artificial CT Images using Patch-based Conditional Generative Adversarial Networks","display_name":"Generation of Artificial CT Images using Patch-based Conditional Generative Adversarial Networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281395478","doi":"https://doi.org/10.48550/arxiv.2205.09842"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.09842","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.09842","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055227189","display_name":"Marija Habijan","orcid":"https://orcid.org/0000-0002-3754-498X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Habijan, Marija","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5083837803","display_name":"Irena Gali\u0107","orcid":"https://orcid.org/0000-0002-0211-4568"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Galic, Irena","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9794,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.59951764},{"id":"https://openalex.org/keywords/generative-adversarial-network","display_name":"Generative adversarial network","score":0.5662551}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70658267},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6367176},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.62863076},{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.59951764},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.5987341},{"id":"https://openalex.org/C2988773926","wikidata":"https://www.wikidata.org/wiki/Q25104379","display_name":"Generative adversarial network","level":3,"score":0.5662551},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5654225},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.53470385},{"id":"https://openalex.org/C2776650193","wikidata":"https://www.wikidata.org/wiki/Q264661","display_name":"Obstacle","level":2,"score":0.5240293},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.49913478},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45692492},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.4551584},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.45005888},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3783642},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.09842","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.09842","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.09842","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.69,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4322709305","https://openalex.org/W4308928038","https://openalex.org/W4200430540","https://openalex.org/W3217069185","https://openalex.org/W3141413246","https://openalex.org/W3049340819","https://openalex.org/W3002487853","https://openalex.org/W2995777218","https://openalex.org/W2888032422","https://openalex.org/W2808862658"],"abstract_inverted_index":{"Deep":[0],"learning":[1],"has":[2],"a":[3,19,85],"great":[4,154],"potential":[5,155],"to":[6,38,156],"alleviate":[7],"diagnosis":[8],"and":[9,56,114,130],"prognosis":[10],"for":[11,95,142],"various":[12],"clinical":[13],"procedures.":[14],"However,":[15],"the":[16,26,39,45,100,135,138,143,161],"lack":[17],"of":[18,22,102,137,146,163],"sufficient":[20],"number":[21],"medical":[23,47,104,165],"images":[24,113],"is":[25],"most":[27],"common":[28],"obstacle":[29],"in":[30,44,160],"conducting":[31],"image-based":[32],"analysis":[33,48],"using":[34],"deep":[35],"learning.":[36],"Due":[37],"annotations":[40],"scarcity,":[41],"semi-supervised":[42],"techniques":[43,58],"automatic":[46],"are":[49,91],"getting":[50],"high":[51],"attention.":[52],"Artificial":[53],"data":[54],"augmentation":[55],"generation":[57,77,106,145],"such":[59],"as":[60,93],"generative":[61,81],"adversarial":[62,82,140],"networks":[63,83],"(GANs)":[64],"may":[65],"help":[66],"overcome":[67],"this":[68,71],"obstacle.":[69],"In":[70],"work,":[72],"we":[73],"present":[74],"an":[75],"image":[76,96,105,166],"approach":[78,141],"that":[79],"uses":[80],"with":[84],"conditional":[86],"discriminator":[87],"where":[88],"segmentation":[89],"masks":[90],"used":[92],"conditions":[94],"generation.":[97,167],"We":[98],"validate":[99],"feasibility":[101],"GAN-enhanced":[103],"on":[107],"whole":[108],"heart":[109],"computed":[110],"tomography":[111],"(CT)":[112],"its":[115],"seven":[116],"substructures,":[117],"namely:":[118],"left":[119,123],"ventricle,":[120,122],"right":[121,125],"atrium,":[124,126],"myocardium,":[127],"pulmonary":[128],"arteries,":[129],"aorta.":[131],"Obtained":[132],"results":[133],"demonstrate":[134],"suitability":[136],"proposed":[139],"accurate":[144],"high-quality":[147],"CT":[148],"images.":[149],"The":[150],"presented":[151],"method":[152],"shows":[153],"facilitate":[157],"further":[158],"research":[159],"domain":[162],"artificial":[164]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281395478","counts_by_year":[],"updated_date":"2025-01-22T04:40:48.987272","created_date":"2022-05-25"}