{"id":"https://openalex.org/W4281251086","doi":"https://doi.org/10.48550/arxiv.2205.09299","title":"3DConvCaps: 3DUnet with Convolutional Capsule Encoder for Medical Image Segmentation","display_name":"3DConvCaps: 3DUnet with Convolutional Capsule Encoder for Medical Image Segmentation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281251086","doi":"https://doi.org/10.48550/arxiv.2205.09299"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.09299","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.09299","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101612317","display_name":"Minh Tr\u1ea7n","orcid":"https://orcid.org/0000-0003-4637-6081"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tran, Minh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052144407","display_name":"Viet-Khoa Vo-Ho","orcid":"https://orcid.org/0000-0003-0277-7094"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vo-Ho, Viet-Khoa","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023725893","display_name":"Ngan Le","orcid":"https://orcid.org/0000-0003-2571-0511"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Le, Ngan T. H.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pooling","display_name":"Pooling","score":0.6483198},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.5356552},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.44989815},{"id":"https://openalex.org/keywords/convolutional-code","display_name":"Convolutional code","score":0.4117217}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.77756155},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7449757},{"id":"https://openalex.org/C70437156","wikidata":"https://www.wikidata.org/wiki/Q7228652","display_name":"Pooling","level":2,"score":0.6483198},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6275784},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6228884},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.570494},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.55661684},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5356552},{"id":"https://openalex.org/C92757383","wikidata":"https://www.wikidata.org/wiki/Q382497","display_name":"Affine transformation","level":2,"score":0.5127917},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.44989815},{"id":"https://openalex.org/C157899210","wikidata":"https://www.wikidata.org/wiki/Q1395022","display_name":"Convolutional code","level":3,"score":0.4117217},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.39493796},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.22629106},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.16684818},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.129147},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.06837493},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.09299","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2205.09299","pdf_url":"http://arxiv.org/pdf/2205.09299","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.09299","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.09299","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.52,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390975304","https://openalex.org/W4287804464","https://openalex.org/W3103989898","https://openalex.org/W3022252430","https://openalex.org/W2953234277","https://openalex.org/W2900413183","https://openalex.org/W2626256601","https://openalex.org/W2132373020","https://openalex.org/W2096049278","https://openalex.org/W147410782"],"abstract_inverted_index":{"Convolutional":[0,103],"Neural":[1],"Networks":[2],"(CNNs)":[3],"have":[4],"achieved":[5,61],"promising":[6],"results":[7,82],"in":[8,64],"medical":[9],"image":[10],"segmentation.":[11,92],"However,":[12],"CNNs":[13,44],"require":[14],"lots":[15],"of":[16,22,27,155,164],"training":[17],"data":[18],"and":[19,25,49,75,90,135,148,158,167,173],"are":[20,45],"incapable":[21],"handling":[23],"pose":[24],"deformation":[26],"objects.":[28],"Furthermore,":[29],"their":[30],"pooling":[31,70],"layers":[32,71,116,166,169],"tend":[33],"to":[34,47,108],"discard":[35],"important":[36],"information":[37],"such":[38,86],"as":[39,41,43,87],"positions":[40],"well":[42],"sensitive":[46],"rotation":[48],"affine":[50],"transformation.":[51],"Capsule":[52,104],"network":[53,101,142,156],"is":[54],"a":[55,98],"recent":[56],"new":[57],"architecture":[58],"that":[59,138],"has":[60,79],"better":[62],"robustness":[63],"part-whole":[65],"representation":[66],"learning":[67],"by":[68],"replacing":[69],"with":[72,102,114,124],"dynamic":[73],"routing":[74],"convolutional":[76,115],"strides,":[77],"which":[78],"shown":[80],"potential":[81],"on":[83,129],"popular":[84],"tasks":[85],"digit":[88],"classification":[89],"object":[91],"In":[93],"this":[94],"paper,":[95],"we":[96],"propose":[97],"3D":[99,140],"encoder-decoder":[100],"Encoder":[105],"(called":[106],"3DConvCaps)":[107],"learn":[109],"lower-level":[110],"features":[111,121],"(short-range":[112],"attention)":[113],"while":[117],"modeling":[118],"the":[119],"higher-level":[120],"(long-range":[122],"dependence)":[123],"capsule":[125,146,168],"layers.":[126],"Our":[127],"experiments":[128],"multiple":[130],"datasets":[131],"including":[132],"iSeg-2017,":[133],"Hippocampus,":[134],"Cardiac":[136],"demonstrate":[137],"our":[139],"3DConvCaps":[141],"considerably":[143],"outperforms":[144],"previous":[145],"networks":[147],"3D-UNets.":[149],"We":[150],"further":[151],"conduct":[152],"ablation":[153],"studies":[154],"efficiency":[157],"segmentation":[159],"performance":[160],"under":[161],"various":[162],"configurations":[163],"convolution":[165],"at":[170],"both":[171],"contracting":[172],"expanding":[174],"paths.":[175]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281251086","counts_by_year":[],"updated_date":"2025-03-07T13:15:30.415165","created_date":"2022-05-23"}