{"id":"https://openalex.org/W4280488708","doi":"https://doi.org/10.48550/arxiv.2205.08926","title":"Generating Explanations from Deep Reinforcement Learning Using Episodic Memory","display_name":"Generating Explanations from Deep Reinforcement Learning Using Episodic Memory","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4280488708","doi":"https://doi.org/10.48550/arxiv.2205.08926"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.08926","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.08926","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5065665155","display_name":"Sam Blakeman","orcid":"https://orcid.org/0000-0002-5023-7933"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Blakeman, Sam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5073001689","display_name":"Denis Mareschal","orcid":"https://orcid.org/0000-0002-9828-9548"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mareschal, Denis","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.640014,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9586,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9586,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.88711405},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7383381},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64606476},{"id":"https://openalex.org/C88576662","wikidata":"https://www.wikidata.org/wiki/Q18646","display_name":"Episodic memory","level":3,"score":0.6231319},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.61343604},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5838567},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.5753189},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.4592064},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39703077},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.13173747},{"id":"https://openalex.org/C169900460","wikidata":"https://www.wikidata.org/wiki/Q2200417","display_name":"Cognition","level":2,"score":0.11219275},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.09415078},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.061387002},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.08926","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.08926","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.08926","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.72,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W641279757","https://openalex.org/W4380318855","https://openalex.org/W4362501864","https://openalex.org/W4306904969","https://openalex.org/W370975646","https://openalex.org/W2149537132","https://openalex.org/W2138720691","https://openalex.org/W2031695474","https://openalex.org/W2024136090","https://openalex.org/W2018871932"],"abstract_inverted_index":{"Deep":[0,8,32,61,100,140],"Reinforcement":[1],"Learning":[2],"(RL)":[3],"involves":[4],"the":[5,24,89,136],"use":[6,98],"of":[7,27,47,85,91,138],"Neural":[9],"Networks":[10],"(DNNs)":[11],"to":[12,18,40,74,87,108,133],"make":[13,69],"sequential":[14],"decisions":[15,55,113,121],"in":[16,143],"order":[17],"maximize":[19],"reward.":[20],"For":[21],"many":[22],"tasks":[23],"resulting":[25,71],"sequence":[26],"actions":[28],"produced":[29],"by":[30],"a":[31,77,82,99,123],"RL":[33,62,101,141],"policy":[34,115],"can":[35,129],"be":[36,131],"long":[37],"and":[38,56,80,110],"difficult":[39],"understand":[41,75],"for":[42],"humans.":[43],"A":[44],"crucial":[45],"component":[46],"human":[48,78,125],"explanations":[49],"is":[50],"selectivity,":[51],"whereby":[52],"only":[53],"key":[54,112],"causes":[57],"are":[58],"recounted.":[59],"Imbuing":[60],"agents":[63,142],"with":[64,103],"such":[65],"an":[66,104,144],"ability":[67],"would":[68],"their":[70],"policies":[72],"easier":[73],"from":[76],"perspective":[79],"generate":[81],"concise":[83],"set":[84],"instructions":[86],"aid":[88],"learning":[90,137],"future":[92],"agents.":[93],"To":[94],"this":[95],"end":[96],"we":[97],"agent":[102],"episodic":[105],"memory":[106],"system":[107],"identify":[109],"recount":[111],"during":[114],"execution.":[116],"We":[117],"show":[118],"that":[119,128],"these":[120],"form":[122],"short,":[124],"readable":[126],"explanation":[127],"also":[130],"used":[132],"speed":[134],"up":[135],"naive":[139],"algorithm-independent":[145],"manner.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4280488708","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-06T05:12:26.559654","created_date":"2022-05-22"}