{"id":"https://openalex.org/W4280601330","doi":"https://doi.org/10.48550/arxiv.2205.08685","title":"Policy Distillation with Selective Input Gradient Regularization for Efficient Interpretability","display_name":"Policy Distillation with Selective Input Gradient Regularization for Efficient Interpretability","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4280601330","doi":"https://doi.org/10.48550/arxiv.2205.08685"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.08685","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.08685","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049977157","display_name":"Jinwei Xing","orcid":"https://orcid.org/0000-0002-8085-2769"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xing, Jinwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086276958","display_name":"Takashi Nagata","orcid":"https://orcid.org/0000-0002-3733-2709"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nagata, Takashi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057546088","display_name":"Xinyun Zou","orcid":"https://orcid.org/0000-0002-5387-6562"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zou, Xinyun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060924942","display_name":"Emre Neftci","orcid":"https://orcid.org/0000-0002-0332-3273"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Neftci, Emre","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5011585098","display_name":"Jeffrey L. Krichmar","orcid":"https://orcid.org/0000-0003-0739-2468"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Krichmar, Jeffrey L.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.95630586},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.5603466},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.53747904},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.5324356}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.95630586},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7369626},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6754356},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.6538125},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5603466},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.53747904},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53686523},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.5324356},{"id":"https://openalex.org/C204030448","wikidata":"https://www.wikidata.org/wiki/Q101017","display_name":"Distillation","level":2,"score":0.5238367},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45021045},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4140085},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.11197251},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.08685","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.08685","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.08685","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4319993887","https://openalex.org/W4310278675","https://openalex.org/W4297789176","https://openalex.org/W4220659530","https://openalex.org/W2998594699","https://openalex.org/W2968060152","https://openalex.org/W2963249138","https://openalex.org/W2905433371","https://openalex.org/W2888392564","https://openalex.org/W2768346313"],"abstract_inverted_index":{"Although":[0],"deep":[1,34],"Reinforcement":[2],"Learning":[3],"(RL)":[4],"has":[5],"proven":[6],"successful":[7],"in":[8,38,104],"a":[9],"wide":[10],"range":[11],"of":[12,57,76,117,145],"tasks,":[13,129],"one":[14],"challenge":[15],"it":[16],"faces":[17],"is":[18,110],"interpretability":[19,32,100],"when":[20],"applied":[21],"to":[22,30,92,113,120,139],"real-world":[23,58],"problems.":[24],"Saliency":[25],"maps":[26,65],"are":[27,46],"frequently":[28],"used":[29],"provide":[31],"for":[33,66],"neural":[35],"networks.":[36],"However,":[37],"the":[39,54,115,141],"RL":[40,67,118],"domain,":[41],"existing":[42],"saliency":[43,64,106],"map":[44],"approaches":[45],"either":[47],"computationally":[48],"expensive":[49],"and":[50,88,101,135,143],"thus":[51],"cannot":[52,61],"satisfy":[53],"real-time":[55],"requirement":[56],"scenarios":[59],"or":[60],"produce":[62,93],"interpretable":[63],"policies.":[68],"In":[69],"this":[70],"work,":[71],"we":[72],"propose":[73],"an":[74],"approach":[75,109],"Distillation":[77],"with":[78],"selective":[79],"Input":[80],"Gradient":[81],"Regularization":[82],"(DIGR)":[83],"which":[84],"uses":[85],"policy":[86],"distillation":[87],"input":[89],"gradient":[90],"regularization":[91],"new":[94],"policies":[95,119],"that":[96],"achieve":[97],"both":[98],"high":[99],"computation":[102],"efficiency":[103],"generating":[105],"maps.":[107],"Our":[108],"also":[111],"found":[112],"improve":[114],"robustness":[116],"multiple":[121],"adversarial":[122],"attacks.":[123],"We":[124],"conduct":[125],"experiments":[126],"on":[127],"three":[128],"MiniGrid":[130],"(Fetch":[131],"Object),":[132],"Atari":[133],"(Breakout)":[134],"CARLA":[136],"Autonomous":[137],"Driving,":[138],"demonstrate":[140],"importance":[142],"effectiveness":[144],"our":[146],"approach.":[147]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4280601330","counts_by_year":[],"updated_date":"2025-02-25T22:26:13.448229","created_date":"2022-05-22"}