{"id":"https://openalex.org/W4320350973","doi":"https://doi.org/10.48550/arxiv.2205.06619","title":"FastSTMF: Efficient tropical matrix factorization algorithm for sparse data","display_name":"FastSTMF: Efficient tropical matrix factorization algorithm for sparse data","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4320350973","doi":"https://doi.org/10.48550/arxiv.2205.06619"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.06619","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.06619","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045201355","display_name":"Amra Omanovi\u0107","orcid":"https://orcid.org/0000-0001-5729-4730"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Omanovi\u0107, Amra","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046366613","display_name":"Polona Oblak","orcid":"https://orcid.org/0000-0002-4876-5163"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oblak, Polona","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5070653907","display_name":"Toma\u017e Curk","orcid":"https://orcid.org/0000-0003-4888-7256"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Curk, Toma\u017e","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.900115,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11321","display_name":"Error Correcting Code Techniques","score":0.945,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11321","display_name":"Error Correcting Code Techniques","score":0.945,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10792","display_name":"Matrix Theory and Algorithms","score":0.9202,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.78824955},{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.6366962},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.47879562}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.78824955},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.6565591},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64000285},{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.6366962},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.49251422},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.47879562},{"id":"https://openalex.org/C56372850","wikidata":"https://www.wikidata.org/wiki/Q1050404","display_name":"Sparse matrix","level":3,"score":0.47382984},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4300915},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3703068},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33024886},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.06619","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2205.06619","pdf_url":"http://arxiv.org/pdf/2205.06619","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.06619","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.06619","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390394189","https://openalex.org/W2972997031","https://openalex.org/W2792706544","https://openalex.org/W2539013788","https://openalex.org/W2156699640","https://openalex.org/W2146544734","https://openalex.org/W2127243424","https://openalex.org/W2045265907","https://openalex.org/W2037504162","https://openalex.org/W1568451138"],"abstract_inverted_index":{"Matrix":[0,72],"factorization,":[1],"one":[2],"of":[3,51,94],"the":[4,48,92,104,108,144],"most":[5],"popular":[6],"methods":[7,56],"in":[8,17,86,115],"machine":[9],"learning,":[10],"has":[11],"recently":[12],"benefited":[13],"from":[14,40,103],"introducing":[15],"non-linearity":[16,24],"prediction":[18],"tasks":[19],"using":[20,157],"tropical":[21,53],"semiring.":[22],"The":[23],"enables":[25],"a":[26,64,77,158],"better":[27,129],"fit":[28],"to":[29,122,137],"extreme":[30],"values":[31],"and":[32,98,107,118,133],"distributions,":[33],"thus":[34],"discovering":[35],"high-variance":[36],"patterns":[37],"that":[38,84,111,126],"differ":[39],"those":[41],"found":[42],"by":[43],"standard":[44],"linear":[45],"algebra.":[46],"However,":[47],"optimization":[49,161],"process":[50],"various":[52],"matrix":[54,149],"factorization":[55,150],"is":[57,134],"slow.":[58],"In":[59],"our":[60],"work,":[61],"we":[62,124],"propose":[63],"new":[65,159],"method":[66],"FastSTMF":[67,95,112,127],"based":[68,152],"on":[69,96,130,153],"Sparse":[70],"Tropical":[71],"Factorization":[73],"(STMF),":[74],"which":[75],"introduces":[76],"novel":[78],"strategy":[79],"for":[80,146],"updating":[81],"factor":[82],"matrices":[83],"results":[85,109],"efficient":[87],"computational":[88],"performance.":[89],"We":[90],"evaluated":[91],"efficiency":[93],"synthetic":[97],"real":[99],"gene":[100],"expression":[101],"data":[102],"TCGA":[105],"database,":[106],"show":[110,125],"outperforms":[113],"STMF":[114],"both":[116],"accuracy":[117],"running":[119],"time.":[120],"Compared":[121],"NMF,":[123],"performs":[128],"some":[131],"datasets":[132],"not":[135],"prone":[136],"overfitting":[138],"as":[139],"NMF.":[140],"This":[141],"work":[142],"sets":[143],"basis":[145],"developing":[147],"other":[148,155],"techniques":[151],"many":[154],"semirings":[156],"proposed":[160],"process.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320350973","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-16T16:32:43.485432","created_date":"2023-02-13"}