{"id":"https://openalex.org/W4288812823","doi":"https://doi.org/10.48550/arxiv.2205.05874","title":"Distinction Maximization Loss: Efficiently Improving Out-of-Distribution Detection and Uncertainty Estimation by Replacing the Loss and Calibrating","display_name":"Distinction Maximization Loss: Efficiently Improving Out-of-Distribution Detection and Uncertainty Estimation by Replacing the Loss and Calibrating","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4288812823","doi":"https://doi.org/10.48550/arxiv.2205.05874"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.05874","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.05874","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021701067","display_name":"David Mac\u00eado","orcid":"https://orcid.org/0000-0002-2527-4548"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mac\u00eado, David","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zanchettin, Cleber","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5025550530","display_name":"Teresa B. Ludermir","orcid":"https://orcid.org/0000-0002-8980-6742"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ludermir, Teresa","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.865382,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9861,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/softmax-function","display_name":"Softmax function","score":0.93879044},{"id":"https://openalex.org/keywords/cross-entropy","display_name":"Cross entropy","score":0.51170206},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.4967788},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.4769565}],"concepts":[{"id":"https://openalex.org/C188441871","wikidata":"https://www.wikidata.org/wiki/Q7554146","display_name":"Softmax function","level":3,"score":0.93879044},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.711675},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.53156036},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5212001},{"id":"https://openalex.org/C167981619","wikidata":"https://www.wikidata.org/wiki/Q1685498","display_name":"Cross entropy","level":3,"score":0.51170206},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.4967788},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.4769565},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4164126},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36217153},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.33732185},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.2748018},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20723432}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.05874","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.05874","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.05874","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391307109","https://openalex.org/W4389157492","https://openalex.org/W4380994319","https://openalex.org/W4367154275","https://openalex.org/W4310030444","https://openalex.org/W4287163743","https://openalex.org/W4225630782","https://openalex.org/W3207800728","https://openalex.org/W2913125146","https://openalex.org/W2911303748"],"abstract_inverted_index":{"Building":[0],"robust":[1],"deterministic":[2,56,173],"neural":[3,57,174],"networks":[4,58],"remains":[5],"a":[6,66,118,134,146],"challenge.":[7],"On":[8,27],"the":[9,18,28,43,47,70,75,78,82,86,91,100,108,112,139,182],"one":[10,109],"hand,":[11,30],"some":[12,25,31],"approaches":[13,161],"improve":[14],"out-of-distribution":[15,40,151,169],"detection":[16,41,170],"at":[17,42,186],"cost":[19],"of":[20,45,77],"reducing":[21,46],"classification":[22,35,164],"accuracy":[23],"in":[24,163],"situations.":[26],"other":[29],"methods":[32],"simultaneously":[33,162],"increase":[34],"accuracy,":[36,165],"uncertainty":[37,166],"estimation,":[38,167],"and":[39,85,168],"expense":[44],"inference":[48,176],"efficiency.":[49,177],"In":[50],"this":[51],"paper,":[52],"we":[53,94,126,132,144],"propose":[54,145],"training":[55],"using":[59],"our":[60],"DisMax":[61,157],"loss,":[62,93],"which":[63],"works":[64],"as":[65],"drop-in":[67],"replacement":[68],"for":[69],"usual":[71],"SoftMax":[72,83],"loss":[73],"(i.e.,":[74],"combination":[76],"linear":[79],"output":[80],"layer,":[81],"activation,":[84],"cross-entropy":[87],"loss).":[88],"Starting":[89],"from":[90],"IsoMax+":[92],"create":[95],"each":[96],"logit":[97],"based":[98],"on":[99],"distances":[101],"to":[102,120,123,137,149,180],"all":[103],"prototypes,":[104],"rather":[105],"than":[106],"just":[107],"associated":[110],"with":[111],"correct":[113],"class.":[114],"We":[115],"also":[116],"introduce":[117],"mechanism":[119],"combine":[121],"images":[122],"construct":[124],"what":[125],"call":[127],"fractional":[128],"probability":[129],"regularization.":[130],"Moreover,":[131],"present":[133],"fast":[135],"way":[136],"calibrate":[138],"network":[140,175],"after":[141],"training.":[142],"Finally,":[143],"composite":[147],"score":[148],"perform":[150],"detection.":[152],"Our":[153],"experiments":[154],"show":[155],"that":[156],"usually":[158],"outperforms":[159],"current":[160],"while":[171],"maintaining":[172],"The":[178],"code":[179],"reproduce":[181],"results":[183],"is":[184],"available":[185],"https://github.com/dlmacedo/distinction-maximization-loss.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4288812823","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-04T16:36:39.761845","created_date":"2022-07-30"}