{"id":"https://openalex.org/W4280577370","doi":"https://doi.org/10.48550/arxiv.2205.05345","title":"Variational Autoencoder Leveraged MMSE Channel Estimation","display_name":"Variational Autoencoder Leveraged MMSE Channel Estimation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4280577370","doi":"https://doi.org/10.48550/arxiv.2205.05345"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.05345","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.05345","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110969908","display_name":"Michael Baur","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Baur, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034199583","display_name":"Benedikt Fesl","orcid":"https://orcid.org/0000-0002-1431-5885"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fesl, Benedikt","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103164344","display_name":"Michael Koller","orcid":"https://orcid.org/0000-0002-4814-2900"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Koller, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5004140094","display_name":"Wolfgang Utschick","orcid":"https://orcid.org/0000-0002-2871-4246"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Utschick, Wolfgang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10515","display_name":"Cancer-related molecular mechanisms research","score":0.9537,"subfield":{"id":"https://openalex.org/subfields/1306","display_name":"Cancer Research"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9125,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.6130974},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.43354204}],"concepts":[{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.85067105},{"id":"https://openalex.org/C90652560","wikidata":"https://www.wikidata.org/wiki/Q11091747","display_name":"Minimum mean square error","level":3,"score":0.6598015},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.6133804},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.6130974},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5850838},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.50312394},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.49056143},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.43354204},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.4221738},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34643638},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.30528054},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.23151019},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.18092477},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.05345","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2205.05345","pdf_url":"http://arxiv.org/pdf/2205.05345","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.05345","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.05345","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4323520903"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3125536267","https://openalex.org/W3013693939","https://openalex.org/W2949310342","https://openalex.org/W2907746047","https://openalex.org/W2585209928","https://openalex.org/W2521753262","https://openalex.org/W2274645452","https://openalex.org/W2159052453","https://openalex.org/W2075897667","https://openalex.org/W1999706086"],"abstract_inverted_index":{"We":[0,89,142],"propose":[1,90,144],"to":[2,193],"utilize":[3],"a":[4,25,30,44,79,135,176],"variational":[5],"autoencoder":[6],"(VAE)":[7],"for":[8,138],"data-driven":[9],"channel":[10,17,81,87,113,151,173,196],"estimation.":[11,105],"The":[12],"underlying":[13],"true":[14],"and":[15,38,104,171,184],"unknown":[16],"distribution":[18,28],"is":[19,125,154,162],"modeled":[20],"by":[21,34],"the":[22,35,51,64,68,85,99,117,120,158,181,185],"VAE":[23,69,94,121,189],"as":[24,134],"conditional":[26,41],"Gaussian":[27],"in":[29,59,98,157,191],"novel":[31],"way,":[32],"parameterized":[33],"respective":[36],"first":[37],"second":[39],"order":[40],"moments.":[42],"As":[43],"result,":[45],"it":[46],"can":[47,83,132],"be":[48],"observed":[49],"that":[50,96,109,131],"linear":[52],"minimum":[53],"mean":[54],"square":[55],"error":[56],"(LMMSE)":[57],"estimator":[58,82,130],"its":[60],"variant":[61],"conditioned":[62],"on":[63,169],"latent":[65],"sample":[66],"of":[67,93,119,180,187],"approximates":[70],"an":[71,129,139],"optimal":[72],"MSE":[73],"estimator.":[74,88],"Furthermore,":[75],"we":[76,107,127],"argue":[77],"how":[78],"VAE-based":[80],"approximate":[84],"MMSE":[86],"three":[91],"variants":[92],"estimators":[95],"differ":[97],"data":[100,174],"used":[101],"during":[102,122],"training":[103,159],"First,":[106],"show":[108],"given":[110],"perfectly":[111,149],"known":[112,150],"state":[114,152],"information":[115,153],"at":[116,165],"input":[118],"estimation,":[123],"which":[124],"impractical,":[126],"obtain":[128],"serve":[133],"benchmark":[136],"result":[137],"estimation":[140,197],"scenario.":[141],"then":[143],"practically":[145],"feasible":[146],"approaches,":[147],"where":[148],"only":[155],"necessary":[156],"phase":[160],"or":[161],"not":[163],"needed":[164],"all.":[166],"Simulation":[167],"results":[168],"3GPP":[170],"QuaDRiGa":[172],"attest":[175],"small":[177],"performance":[178],"loss":[179],"practical":[182],"approaches":[183,190],"superiority":[186],"our":[188],"comparison":[192],"other":[194],"related":[195],"methods.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4280577370","counts_by_year":[],"updated_date":"2024-12-16T00:09:01.966972","created_date":"2022-05-22"}