{"id":"https://openalex.org/W4320024940","doi":"https://doi.org/10.48550/arxiv.2205.04878","title":"Hybrid quantum ResNet for car classification and its hyperparameter optimization","display_name":"Hybrid quantum ResNet for car classification and its hyperparameter optimization","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4320024940","doi":"https://doi.org/10.48550/arxiv.2205.04878"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.04878","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://arxiv.org/abs/2205.04878","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088666530","display_name":"Asel Sagingalieva","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sagingalieva, Asel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092499108","display_name":"Mo Kordzanganeh","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kordzanganeh, Mo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034423309","display_name":"Andrii Kurkin","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kurkin, Andrii","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038159493","display_name":"Artem Melnikov","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Melnikov, Artem","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045330336","display_name":"Daniil Kuhmistrov","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kuhmistrov, Daniil","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110959148","display_name":"Michael Perelshtein","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Perelshtein, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086295021","display_name":"Alexey Melnikov","orcid":"https://orcid.org/0000-0002-5033-4063"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Melnikov, Alexey","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046808924","display_name":"Andrea Skolik","orcid":"https://orcid.org/0000-0003-2369-6314"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Skolik, Andrea","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5051206990","display_name":"David Von Dollen","orcid":"https://orcid.org/0000-0002-9831-0685"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Von Dollen, David","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.659251,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10682","display_name":"Quantum Computing Algorithms and Architecture","score":0.9888,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9836,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.933208},{"id":"https://openalex.org/keywords/hyperparameter-optimization","display_name":"Hyperparameter Optimization","score":0.8837211},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.54128474},{"id":"https://openalex.org/keywords/bayesian-optimization","display_name":"Bayesian Optimization","score":0.50669557},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.41269565}],"concepts":[{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.933208},{"id":"https://openalex.org/C10485038","wikidata":"https://www.wikidata.org/wiki/Q48996162","display_name":"Hyperparameter optimization","level":3,"score":0.8837211},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6414899},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6253921},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62446934},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.54128474},{"id":"https://openalex.org/C2778049539","wikidata":"https://www.wikidata.org/wiki/Q17002908","display_name":"Bayesian optimization","level":2,"score":0.50669557},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.42655718},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.41269565},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32635784},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.218999},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16522422},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.04878","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s42484-023-00123-2","pdf_url":"https://link.springer.com/content/pdf/10.1007/s42484-023-00123-2.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.04878","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.04878","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4320024940","https://openalex.org/W4387187604"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4286902601","https://openalex.org/W3206613651","https://openalex.org/W3169687406","https://openalex.org/W3103707007","https://openalex.org/W2996585552","https://openalex.org/W2963001956","https://openalex.org/W2906178137","https://openalex.org/W2405673391","https://openalex.org/W2200000192","https://openalex.org/W1809990924"],"abstract_inverted_index":{"Image":[0],"recognition":[1,20],"is":[2],"one":[3],"of":[4,8,23,25,38,46,96,111,130,169,187],"the":[5,94,106,109,112,131,137,151,174,181],"primary":[6],"applications":[7],"machine":[9,13,51,72],"learning":[10,14,52,73],"algorithms.":[11],"Nevertheless,":[12],"models":[15,53],"used":[16,159],"in":[17,50,93,103,108,119],"modern":[18],"image":[19,122],"systems":[21],"consist":[22],"millions":[24],"parameters":[26],"that":[27],"usually":[28],"require":[29],"significant":[30],"computational":[31],"time":[32],"to":[33,42,105],"be":[34],"adjusted.":[35],"Moreover,":[36],"adjustment":[37],"model":[39,74,135,176,183],"hyperparameters":[40],"leads":[41],"additional":[43],"overhead.":[44],"Because":[45],"this,":[47],"new":[48],"developments":[49],"and":[54,68,89,101,125,147],"hyperparameter":[55,65,81,140],"optimization":[56,66,82],"techniques":[57],"are":[58],"required.":[59],"This":[60],"paper":[61],"presents":[62],"a":[63,69,120,127,145,161],"quantum-inspired":[64],"technique":[67],"hybrid":[70,132,175],"quantum-classical":[71],"for":[75],"supervised":[76],"learning.":[77],"We":[78,115],"benchmark":[79],"our":[80,117],"method":[83],"over":[84,150],"standard":[85,153],"black-box":[86],"objective":[87],"functions":[88],"observe":[90],"performance":[91],"improvements":[92],"form":[95],"reduced":[97],"expected":[98],"run":[99],"times":[100],"fitness":[102],"response":[104],"growth":[107],"size":[110],"search":[113,157],"space.":[114],"test":[116],"approaches":[118],"car":[121],"classification":[123,167],"task":[124],"demonstrate":[126],"full-scale":[128],"implementation":[129],"quantum":[133],"ResNet":[134],"with":[136,160],"tensor":[138],"train":[139],"optimization.":[141],"Our":[142],"tests":[143],"show":[144],"qualitative":[146],"quantitative":[148],"advantage":[149],"corresponding":[152],"classical":[154,182],"tabular":[155],"grid":[156],"approach":[158],"deep":[162],"neural":[163],"network":[164],"ResNet34.":[165],"A":[166],"accuracy":[168,186],"0.97":[170],"was":[171],"obtained":[172],"by":[173],"after":[177,189],"18":[178],"iterations,":[179],"whereas":[180],"achieved":[184],"an":[185],"0.92":[188],"75":[190],"iterations.":[191]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320024940","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-15T19:34:07.479348","created_date":"2023-02-12"}