{"id":"https://openalex.org/W4280541217","doi":"https://doi.org/10.48550/arxiv.2205.04180","title":"EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization","display_name":"EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4280541217","doi":"https://doi.org/10.48550/arxiv.2205.04180"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.04180","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.04180","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024254029","display_name":"Laurent Condat","orcid":"https://orcid.org/0000-0001-7087-1002"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Condat, Laurent","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100765686","display_name":"Kai Yi","orcid":"https://orcid.org/0000-0003-0415-3584"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036598221","display_name":"Peter Richt\u00e1rik","orcid":"https://orcid.org/0000-0003-4380-5848"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Richt\u00e1rik, Peter","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.824572,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10682","display_name":"Quantum Computing Algorithms and Architecture","score":0.9802,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/variance-reduction","display_name":"Variance reduction","score":0.50506216}],"concepts":[{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.71189314},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.64815974},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6352697},{"id":"https://openalex.org/C131097465","wikidata":"https://www.wikidata.org/wiki/Q178898","display_name":"Gas compressor","level":2,"score":0.6281399},{"id":"https://openalex.org/C125112378","wikidata":"https://www.wikidata.org/wiki/Q176640","display_name":"Randomness","level":2,"score":0.58499974},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.5458988},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5398653},{"id":"https://openalex.org/C62644790","wikidata":"https://www.wikidata.org/wiki/Q3454689","display_name":"Variance reduction","level":3,"score":0.50506216},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.4799545},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.43815732},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.41559702},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.33054972},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.30145502},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.18972349},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.096449524},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.04180","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.04180","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.04180","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4382618745","https://openalex.org/W2885125400","https://openalex.org/W2748922771","https://openalex.org/W2595172197","https://openalex.org/W2127970246","https://openalex.org/W2084856301","https://openalex.org/W1989889224","https://openalex.org/W1987128138","https://openalex.org/W1973775000","https://openalex.org/W1001352512"],"abstract_inverted_index":{"In":[0,51,91,138],"distributed":[1,287],"or":[2],"federated":[3],"optimization":[4],"and":[5,17,44,96,128,135,148,155,177,180,183,202,222],"learning,":[6],"communication":[7,32],"between":[8],"the":[9,15,25,52,63,79,85,89,92,101,116,120,175,178,194,197,228,233,238,243,252],"different":[10,133],"computing":[11],"units":[12],"is":[13,20,84,115,214,248,251,262],"often":[14],"bottleneck":[16],"gradient":[18],"compression":[19,42,126],"widely":[21],"used":[22],"to":[23,192,231],"reduce":[24],"number":[26,244],"of":[27,34,41,49,54,66,88,94,104,119,125,169,196,235,245,280,285],"bits":[28],"sent":[29],"within":[30],"each":[31],"round":[33],"iterative":[35],"methods.":[36],"There":[37],"are":[38,130],"two":[39,123,173,198,281],"classes":[40,124],"operators":[43],"separate":[45],"algorithms":[46,129],"making":[47],"use":[48],"them.":[50],"case":[53,93],"unbiased":[55,182],"random":[56],"compressors":[57,98,185,229],"with":[58,132,164,237,258],"bounded":[59],"variance":[60,74,80],"(e.g.,":[61,99],"rand-k),":[62],"DIANA":[64,154,221],"algorithm":[65,103,257],"Mishchenko":[67],"et":[68,106],"al.":[69,107],"(2019),":[70],"which":[71,109,171],"implements":[72,111],"a":[73,145,150,165,275],"reduction":[75],"technique":[76],"for":[77],"handling":[78],"introduced":[81],"by":[82],"compression,":[83,236],"current":[86,117],"state":[87,118],"art.":[90,121],"biased":[95,184,205],"contractive":[97],"top-k),":[100],"EF21":[102,156,201],"Richt\\'arik":[105],"(2021),":[108],"instead":[110],"an":[112,256],"error-feedback":[113],"mechanism,":[114],"These":[122],"schemes":[127],"distinct,":[131],"analyses":[134],"proof":[136],"techniques.":[137],"this":[139],"paper,":[140],"we":[141],"unify":[142],"them":[143],"into":[144],"single":[146],"framework":[147],"propose":[149],"new":[151],"algorithm,":[152],"recovering":[153],"as":[157,186],"particular":[158,187],"cases.":[159,188],"Our":[160,272],"general":[161],"approach":[162,273],"works":[163],"new,":[166],"larger":[167],"class":[168],"compressors,":[170,206],"has":[172],"parameters,":[174],"bias":[176],"variance,":[179],"includes":[181],"This":[189,250],"allows":[190,230],"us":[191],"inherit":[193],"best":[195],"worlds:":[199],"like":[200,207,220],"unlike":[203,223],"DIANA,":[204],"top-k,":[208],"whose":[209],"good":[210],"performance":[211],"in":[212],"practice":[213],"recognized,":[215],"can":[216],"be":[217],"used.":[218],"And":[219],"EF21,":[224],"independent":[225],"randomness":[226],"at":[227],"mitigate":[232],"effects":[234],"convergence":[239,268],"rate":[240],"improving":[241],"when":[242],"parallel":[246],"workers":[247],"large.":[249],"first":[253],"time":[254],"that":[255],"all":[259],"these":[260],"features":[261],"proposed.":[263],"We":[264],"prove":[265],"its":[266],"linear":[267],"under":[269],"certain":[270],"conditions.":[271],"takes":[274],"step":[276],"towards":[277],"better":[278],"understanding":[279],"so-far":[282],"distinct":[283],"worlds":[284],"communication-efficient":[286],"learning.":[288]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4280541217","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-21T06:43:55.008777","created_date":"2022-05-22"}