{"id":"https://openalex.org/W4229459060","doi":"https://doi.org/10.48550/arxiv.2205.03017","title":"Generative Adversarial Neural Operators","display_name":"Generative Adversarial Neural Operators","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4229459060","doi":"https://doi.org/10.48550/arxiv.2205.03017"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.03017","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.03017","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101726125","display_name":"Md Ashiqur Rahman","orcid":"https://orcid.org/0000-0002-2933-2637"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rahman, Md Ashiqur","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055285511","display_name":"M. A. Florez","orcid":"https://orcid.org/0000-0003-1034-2082"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Florez, Manuel A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014498545","display_name":"Anima Anandkumar","orcid":"https://orcid.org/0000-0002-6974-6797"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Anandkumar, Anima","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006827123","display_name":"Zachary E. Ross","orcid":"https://orcid.org/0000-0002-6343-8400"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ross, Zachary E.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5038884528","display_name":"Kamyar Azizzadenesheli","orcid":"https://orcid.org/0000-0001-8507-1868"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Azizzadenesheli, Kamyar","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.820962,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9472,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.91933566},{"id":"https://openalex.org/keywords/operator","display_name":"Operator (biology)","score":0.59477305}],"concepts":[{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.91933566},{"id":"https://openalex.org/C2780992000","wikidata":"https://www.wikidata.org/wiki/Q17016113","display_name":"Generator (circuit theory)","level":3,"score":0.7685572},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.60304224},{"id":"https://openalex.org/C17020691","wikidata":"https://www.wikidata.org/wiki/Q139677","display_name":"Operator (biology)","level":5,"score":0.59477305},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.558881},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.5448799},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5234546},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.49427748},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.49203488},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44705054},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3728283},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.37022227},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.121022135},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C158448853","wikidata":"https://www.wikidata.org/wiki/Q425218","display_name":"Repressor","level":4,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C86339819","wikidata":"https://www.wikidata.org/wiki/Q407384","display_name":"Transcription factor","level":3,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.03017","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.03017","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.03017","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.7,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4381885966","https://openalex.org/W4293320219","https://openalex.org/W4288256692","https://openalex.org/W4283584549","https://openalex.org/W3156863413","https://openalex.org/W3110074278","https://openalex.org/W2998859928","https://openalex.org/W2953246223","https://openalex.org/W2618858825","https://openalex.org/W2554314924"],"abstract_inverted_index":{"We":[0,149,175],"propose":[1],"the":[2,54,60,90,107,117,134,140,171,178],"generative":[3,9,43],"adversarial":[4,44],"neural":[5,80,85],"operator":[6,67,81],"(GANO),":[7],"a":[8,78,83,97,121],"model":[10],"paradigm":[11],"for":[12,59],"learning":[13,65],"probabilities":[14],"on":[15,182],"infinite-dimensional":[16,36,70,147],"function":[17,37,184],"spaces.":[18,71,148],"The":[19,87,114],"natural":[20],"sciences":[21],"and":[22,57,82,106,137,159,166,189],"engineering":[23],"are":[24,33,92,110,162],"known":[25],"to":[26,89,116,170],"have":[27],"many":[28],"types":[29],"of":[30,62,74,94,180,186],"data":[31,112,125,185],"that":[32],"sampled":[34],"from":[35,96,164],"spaces,":[38],"where":[39,156],"classical":[40],"finite-dimensional":[41,172],"deep":[42],"networks":[45],"(GANs)":[46],"may":[47],"not":[48],"be":[49,144],"directly":[50],"applicable.":[51],"GANO":[52,72,132,152,181],"generalizes":[53],"GAN":[55],"framework":[56],"allows":[58],"sampling":[61],"functions":[63,95,161],"by":[64],"push-forward":[66],"maps":[68],"in":[69,146,153],"consists":[73],"two":[75],"main":[76],"components,":[77],"generator":[79,91,108],"discriminator":[84,118],"functional.":[86],"inputs":[88],"samples":[93,163],"user-specified":[98],"probability":[99],"measure,":[100],"e.g.,":[101],"Gaussian":[102],"random":[103],"field":[104],"(GRF),":[105],"outputs":[109],"synthetic":[111,124],"functions.":[113],"input":[115,158],"is":[119],"either":[120],"real":[122],"or":[123],"function.":[126],"In":[127],"this":[128],"work,":[129],"we":[130],"instantiate":[131],"using":[133],"Wasserstein":[135,141],"criterion":[136],"show":[138,190],"how":[139],"loss":[142],"can":[143],"computed":[145],"empirically":[150,176],"study":[151,177],"controlled":[154],"cases":[155],"both":[157],"output":[160],"GRFs":[165],"compare":[167],"its":[168,191],"performance":[169,193],"counterpart":[173],"GAN.":[174,195],"efficacy":[179],"real-world":[183],"volcanic":[187],"activities":[188],"superior":[192],"over":[194]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4229459060","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-16T15:26:54.064340","created_date":"2022-05-11"}