{"id":"https://openalex.org/W4229442022","doi":"https://doi.org/10.48550/arxiv.2205.02850","title":"A Deep Reinforcement Learning Framework for Rapid Diagnosis of Whole Slide Pathological Images","display_name":"A Deep Reinforcement Learning Framework for Rapid Diagnosis of Whole Slide Pathological Images","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4229442022","doi":"https://doi.org/10.48550/arxiv.2205.02850"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.02850","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.02850","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100935379","display_name":"Tingting Zheng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Tingting","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061306298","display_name":"Weixing chen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"chen, Weixing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100778782","display_name":"Shuqin Li","orcid":"https://orcid.org/0000-0003-3647-442X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Shuqin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024966093","display_name":"Quan Hao","orcid":"https://orcid.org/0000-0002-9642-0514"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Quan, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034739895","display_name":"Bai Qun","orcid":"https://orcid.org/0000-0003-2488-6574"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bai, Qun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012943661","display_name":"Tianhang Nan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nan, Tianhang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110961068","display_name":"Song Zheng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Song","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026558346","display_name":"Xinghua Gao","orcid":"https://orcid.org/0000-0002-3531-8137"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Xinghua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100458078","display_name":"Yue Zhao","orcid":"https://orcid.org/0000-0001-9777-8617"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Yue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5056282612","display_name":"Xiaoyu Cui","orcid":"https://orcid.org/0000-0002-0585-9813"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cui, Xiaoyu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9387,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9296,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/whole-slide-imaging","display_name":"Whole Slide Imaging","score":0.632358},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.548687},{"id":"https://openalex.org/keywords/vertebrae-detection","display_name":"Vertebrae Detection","score":0.539436},{"id":"https://openalex.org/keywords/medical-image-analysis","display_name":"Medical Image Analysis","score":0.538011},{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.537459},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised learning","score":0.42904574}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79060435},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.74887633},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.7419683},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6582929},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6287383},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5592268},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5591354},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.42904574},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4247988},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.42349157},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.41304612},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38371438},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.02850","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2205.02850","pdf_url":"http://arxiv.org/pdf/2205.02850","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.02850","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.02850","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.55,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4380318855","https://openalex.org/W4362501864","https://openalex.org/W4306904969","https://openalex.org/W3049728571","https://openalex.org/W2964765435","https://openalex.org/W2785712252","https://openalex.org/W2586732548","https://openalex.org/W2138720691","https://openalex.org/W2031695474","https://openalex.org/W2024136090"],"abstract_inverted_index":{"The":[0,29,130],"deep":[1,99],"neural":[2,115],"network":[3,111,116],"is":[4,154,173],"a":[5,50,64,96],"research":[6],"hotspot":[7],"for":[8,21,26,110,183],"histopathological":[9],"image":[10,33,139],"analysis,":[11],"which":[12,44,103,178],"can":[13,34,104,204],"improve":[14],"the":[15,55,82,89,107,119,134,138,145,151,158,162,193],"efficiency":[16],"and":[17,38,57,68,122,150,208],"accuracy":[18],"of":[19,52,84,125,141,148,161,165,211],"diagnosis":[20,92],"pathologists":[22],"or":[23],"be":[24,47],"used":[25,155],"disease":[27],"screening.":[28],"whole":[30,212],"slide":[31,213],"pathological":[32],"reach":[35],"one":[36],"gigapixel":[37],"contains":[39],"abundant":[40],"tissue":[41],"feature":[42],"information,":[43],"needs":[45],"to":[46,63,117,156],"divided":[48],"into":[49],"lot":[51],"patches":[53],"in":[54,78,81,144],"training":[56],"inference":[58,207],"stages.":[59],"This":[60],"will":[61],"lead":[62],"long":[65],"convergence":[66],"time":[67,108],"large":[69],"memory":[70],"consumption.":[71],"Furthermore,":[72],"well-annotated":[73],"data":[74],"sets":[75],"are":[76],"also":[77,187],"short":[79],"supply":[80],"field":[83,147,164],"digital":[85],"pathology.":[86],"Inspired":[87],"by":[88,175,192],"pathologist's":[90],"clinical":[91],"process,":[93],"we":[94],"propose":[95],"weakly":[97],"supervised":[98],"reinforcement":[100,126],"learning":[101,127,191],"framework,":[102],"greatly":[105],"reduce":[106],"required":[109],"inference.":[112],"We":[113],"use":[114],"construct":[118],"search":[120,131,184],"model":[121,124,132,153,172,190],"decision":[123,152,189],"agent":[128],"respectively.":[129],"predicts":[133],"next":[135],"action":[136],"through":[137],"features":[140],"different":[142],"magnifications":[143],"current":[146,163],"view,":[149],"return":[157],"predicted":[159],"probability":[160],"view":[166],"image.":[167],"In":[168],"addition,":[169],"an":[170],"expert-guided":[171],"constructed":[174],"multi-instance":[176],"learning,":[177],"not":[179],"only":[180],"provides":[181],"rewards":[182],"model,":[185],"but":[186],"guides":[188],"knowledge":[194],"distillation":[195],"method.":[196],"Experimental":[197],"results":[198],"show":[199],"that":[200],"our":[201],"proposed":[202],"method":[203],"achieve":[205],"fast":[206],"accurate":[209],"prediction":[210],"images":[214],"without":[215],"any":[216],"pixel-level":[217],"annotations.":[218]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4229442022","counts_by_year":[],"updated_date":"2024-12-05T20:42:24.312789","created_date":"2022-05-11"}