{"id":"https://openalex.org/W4229027315","doi":"https://doi.org/10.48550/arxiv.2205.01235","title":"Triangular Dropout: Variable Network Width without Retraining","display_name":"Triangular Dropout: Variable Network Width without Retraining","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4229027315","doi":"https://doi.org/10.48550/arxiv.2205.01235"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.01235","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2205.01235","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058046416","display_name":"Edward W. Staley","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Staley, Edward W.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5017757715","display_name":"J. Markowitz","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Markowitz, Jared","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9836,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9734,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dropout","display_name":"Dropout (neural networks)","score":0.92568135},{"id":"https://openalex.org/keywords/retraining","display_name":"Retraining","score":0.7503515},{"id":"https://openalex.org/keywords/forcing","display_name":"Forcing (mathematics)","score":0.4215188}],"concepts":[{"id":"https://openalex.org/C2776145597","wikidata":"https://www.wikidata.org/wiki/Q25339462","display_name":"Dropout (neural networks)","level":2,"score":0.92568135},{"id":"https://openalex.org/C2778712577","wikidata":"https://www.wikidata.org/wiki/Q3505966","display_name":"Retraining","level":2,"score":0.7503515},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6386654},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.51822144},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47220808},{"id":"https://openalex.org/C193415008","wikidata":"https://www.wikidata.org/wiki/Q639681","display_name":"Network architecture","level":2,"score":0.46016806},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.45729128},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.44617796},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44306028},{"id":"https://openalex.org/C197115733","wikidata":"https://www.wikidata.org/wiki/Q1003136","display_name":"Forcing (mathematics)","level":2,"score":0.4215188},{"id":"https://openalex.org/C182365436","wikidata":"https://www.wikidata.org/wiki/Q50701","display_name":"Variable (mathematics)","level":2,"score":0.4177481},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.41368696},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.26754946},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17173052},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.12585714},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C155202549","wikidata":"https://www.wikidata.org/wiki/Q178803","display_name":"International trade","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.01235","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2205.01235","pdf_url":"http://arxiv.org/pdf/2205.01235","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2205.01235","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2205.01235","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4254349500","https://openalex.org/W3122042562","https://openalex.org/W3028244590","https://openalex.org/W2811460194","https://openalex.org/W2360307734","https://openalex.org/W2081982437","https://openalex.org/W2060761133","https://openalex.org/W2050078012","https://openalex.org/W2027050655","https://openalex.org/W2014369232"],"abstract_inverted_index":{"One":[0],"of":[1,17,27,107,119,158],"the":[2,15,25,28,86,101,117,156],"most":[3],"fundamental":[4],"design":[5],"choices":[6],"in":[7,92,111,122,151],"neural":[8],"networks":[9],"is":[10,33,52],"layer":[11,73,87],"width:":[12],"it":[13],"affects":[14],"capacity":[16],"what":[18],"a":[19,41,60,71,109,141],"network":[20,42,143],"can":[21,88,147],"learn":[22,44],"and":[23,103],"determines":[24],"complexity":[26],"solution.":[29],"This":[30],"latter":[31],"property":[32],"often":[34],"exploited":[35],"when":[36],"introducing":[37],"information":[38],"bottlenecks,":[39],"forcing":[40],"to":[43,59,94,136,161],"compressed":[45,62],"representations.":[46],"However,":[47],"such":[48,108],"an":[49],"architecture":[50,63],"decision":[51],"typically":[53],"immutable":[54],"once":[55],"training":[56],"begins;":[57],"switching":[58],"more":[61],"requires":[64],"retraining.":[65],"In":[66],"this":[67,82],"paper":[68],"we":[69,115,132,154],"present":[70],"new":[72],"design,":[74],"called":[75],"Triangular":[76,120,134,159],"Dropout,":[77],"which":[78],"does":[79],"not":[80],"have":[81],"limitation.":[83],"After":[84],"training,":[85],"be":[89,148],"arbitrarily":[90],"reduced":[91,150],"width":[93],"exchange":[95],"performance":[96],"for":[97],"narrowness.":[98],"We":[99],"demonstrate":[100],"construction":[102],"potential":[104],"use":[105],"cases":[106],"mechanism":[110],"three":[112],"areas.":[113],"Firstly,":[114],"describe":[116],"formulation":[118],"Dropout":[121,135,160],"autoencoders,":[123],"creating":[124,140],"models":[125],"with":[126],"selectable":[127],"compression":[128],"after":[129],"training.":[130],"Secondly,":[131],"add":[133],"VGG19":[137],"on":[138,166],"ImageNet,":[139],"powerful":[142],"which,":[144],"without":[145],"retraining,":[146],"significantly":[149],"parameters.":[152],"Lastly,":[153],"explore":[155],"application":[157],"reinforcement":[162],"learning":[163],"(RL)":[164],"policies":[165],"selected":[167],"control":[168],"problems.":[169]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4229027315","counts_by_year":[],"updated_date":"2025-01-22T17:05:04.849642","created_date":"2022-05-08"}