{"id":"https://openalex.org/W4286576772","doi":"https://doi.org/10.48550/arxiv.2204.13170","title":"AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation","display_name":"AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4286576772","doi":"https://doi.org/10.48550/arxiv.2204.13170"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.13170","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2204.13170","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002021405","display_name":"Farshid Varno","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Varno, Farshid","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035036000","display_name":"Marzie Saghayi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saghayi, Marzie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024819332","display_name":"Laya Rafiee Sevyeri","orcid":"https://orcid.org/0000-0003-4163-9591"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sevyeri, Laya Rafiee","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061185081","display_name":"Sharut Gupta","orcid":"https://orcid.org/0000-0003-1848-9935"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gupta, Sharut","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042893723","display_name":"Stan Matwin","orcid":"https://orcid.org/0000-0001-6629-8434"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Matwin, Stan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5077375832","display_name":"Mohammad Havaei","orcid":"https://orcid.org/0000-0002-3603-5067"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Havaei, Mohammad","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11158","display_name":"Wireless Networks and Protocols","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9827,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.6916177},{"id":"https://openalex.org/keywords/concept-drift","display_name":"Concept Drift","score":0.54635954},{"id":"https://openalex.org/keywords/trust-region","display_name":"Trust region","score":0.43908653},{"id":"https://openalex.org/keywords/adaptive-learning","display_name":"Adaptive Learning","score":0.4288189}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7987536},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.6916177},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.5954204},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.5536733},{"id":"https://openalex.org/C60777511","wikidata":"https://www.wikidata.org/wiki/Q3045002","display_name":"Concept drift","level":3,"score":0.54635954},{"id":"https://openalex.org/C2776257435","wikidata":"https://www.wikidata.org/wiki/Q1576430","display_name":"Bandwidth (computing)","level":2,"score":0.51260513},{"id":"https://openalex.org/C191795146","wikidata":"https://www.wikidata.org/wiki/Q3878446","display_name":"Norm (philosophy)","level":2,"score":0.47406095},{"id":"https://openalex.org/C89109886","wikidata":"https://www.wikidata.org/wiki/Q1535924","display_name":"Trust region","level":3,"score":0.43908653},{"id":"https://openalex.org/C125014702","wikidata":"https://www.wikidata.org/wiki/Q4680749","display_name":"Adaptive learning","level":2,"score":0.4288189},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37434208},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33245474},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.29689968},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28194726},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.07804093},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C178635117","wikidata":"https://www.wikidata.org/wiki/Q747499","display_name":"RADIUS","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.13170","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2204.13170","pdf_url":"http://arxiv.org/pdf/2204.13170","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2204.13170","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.13170","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4312680444"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4296984035","https://openalex.org/W4239323784","https://openalex.org/W3127121676","https://openalex.org/W2990081132","https://openalex.org/W2977584137","https://openalex.org/W2752681920","https://openalex.org/W2393042414","https://openalex.org/W2353911672","https://openalex.org/W2080108722","https://openalex.org/W1997473290"],"abstract_inverted_index":{"In":[0,61,95,109],"Federated":[1],"Learning":[2],"(FL),":[3],"a":[4,13,30],"number":[5],"of":[6,138],"clients":[7,48],"or":[8],"devices":[9],"collaborate":[10],"to":[11,29,54,63,91,111],"train":[12],"model":[14],"without":[15],"sharing":[16],"their":[17],"data.":[18],"Models":[19],"are":[20],"optimized":[21],"locally":[22],"at":[23],"each":[24],"client":[25,141],"and":[26,65,88,119,161],"further":[27],"communicated":[28],"central":[31],"hub":[32],"for":[33,140,147],"aggregation.":[34],"While":[35],"FL":[36,77,170],"is":[37],"an":[38,100],"appealing":[39],"decentralized":[40],"training":[41],"paradigm,":[42],"heterogeneity":[43],"among":[44],"data":[45],"from":[46,57],"different":[47],"can":[49],"cause":[50],"the":[51,58,85,136,155,166],"local":[52],"optimization":[53,78],"drift":[55,87,106],"away":[56],"global":[59],"objective.":[60],"order":[62],"estimate":[64,84],"therefore":[66],"remove":[67,92],"this":[68,96],"drift,":[69,142],"variance":[70],"reduction":[71],"techniques":[72],"have":[73],"been":[74],"incorporated":[75],"into":[76],"recently.":[79],"However,":[80],"these":[81],"approaches":[82],"inaccurately":[83],"clients'":[86],"ultimately":[89],"fail":[90],"it":[93,144],"properly.":[94],"work,":[97],"we":[98],"propose":[99],"adaptive":[101],"algorithm":[102,157],"that":[103,154],"accurately":[104],"estimates":[105,139],"across":[107,168],"clients.":[108],"comparison":[110],"previous":[112],"works,":[113],"our":[114,129],"approach":[115],"necessitates":[116],"less":[117],"storage":[118],"communication":[120],"bandwidth,":[121],"as":[122,124],"well":[123],"lower":[125],"compute":[126],"costs.":[127],"Additionally,":[128],"proposed":[130,156],"methodology":[131],"induces":[132],"stability":[133],"by":[134],"constraining":[135],"norm":[137],"making":[143],"more":[145],"practical":[146],"large":[148],"scale":[149],"FL.":[150],"Experimental":[151],"findings":[152],"demonstrate":[153],"converges":[158],"significantly":[159],"faster":[160],"achieves":[162],"higher":[163],"accuracy":[164],"than":[165],"baselines":[167],"various":[169],"benchmarks.":[171]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4286576772","counts_by_year":[],"updated_date":"2025-01-22T16:00:06.102151","created_date":"2022-07-22"}